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The rich collective behaviors of self-propelled particle (SPP) systems include 
flocking, clustering, and coherent motion. These dynamics are strongly stochastic 
in response, and a small variation in stochasticity may overturn the collective state 
and cause chaotic movement. In the present paper, the impact of random noise on 
the coherence of the collective motion in systems of SPPs is explored, and the 
circumstances under which this kind of motion may be restored. In the simulation 
of a variable angular noise modified Vicsek model, numerical simulations are 
carried out to analyse the biological processes of disruption and recovery. Critical 
noise level found above which order is destroyed, and shows that order may be 
restored when the noise level is decreased, dependent upon the density of each 
particle, and the length of the exposure to the noise. Phase diagrams are created in 
order to define the behavior of the system in various intensities and densities of 
noise. These results give information about the robustness and ductility of active 
matter systems. 
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INTRODUCTION 

Self-propelled particles (SPPs) represent one of the basic families of active matter systems that 

self-propel by local energy expenditure. Examples include biological systems like bird flocks 

and bacterial colonies, as well as synthetic systems such as Janus particles and swarm robots 

(Ali M. A., 2024). The collective motion emerging in SPP systems is one of the main 

phenomena in this type of system, where particles are able to become aligned and move 

coherently because of local interactions. However, the stability of this collective behavior is 

influenced by stochastic perturbations, often modeled as noise (Reynolds, 2022).The dynamics 

of the active matter and, more specifically, self-propelled particles, has become the topic of 

intense interest to the physics, biology, and engineering communities (Pismen, 2021). Such 

systems are highly excitable and, in contrast with passive systems, have a very rich set of 

behaviors. Energy is consumed in active particles continuously, and this enables them to do 

continuous motion and have phenomena like flocking, phase separation, and clustering (Jin, 

2021). The knowledge of these emergent properties of such systems is important not only to 

basic science but also to practical applications, including targeted drug delivery, autonomous 

robot design, and designing smart materials (Ali M. A., 2024). 

Vicsek model is a pioneer theory of the collective movement of SPPs. In this model, the 

positions of the velocities of the particles are changing, depending on the mean direction of 

their neighbors within a specific radius; however, with angular noise (Ahmed I. S., 2018). A 

very non-trivial global behaviour can be the result of such a simple rule, where the system 

experiences the phase transition between disorder and order, when the noise is decreased or the 

particle density is increased (Ahmed I. L., 2017). The effects of speed variability, spatial 

confinement, anisotropy of the interactions, and heterogeneous media have been studied in 

variants of the Vicsek model (Vicsek, 1995). 

The past research proved that the addition of noise interferes with the order, and the 

disorderly motion changes occur. Finite-size scaling and order parameters have been used to 

analyze this transition, as have correlation functions(Soomro et al., 2024). However, while 

much attention has been given to the disruption caused by noise, less is known about the 

system's ability to recover from such disruptions (Ansari et al., 2018). The knowledge of 

recovery is essential in the practicability of environments where noise and perturbation are 

inevitable and where the resilience of systems is important to ensure continued 

operations(Junejo et al., 2019).We discuss this gap, and in this paper, we focus on the disruption 
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and recovery of collective motion in SPP systems subject to random noise. We want to 

determine important levels of noise-induced phase transitions and analyse the speed and 

efficacy with which the system restores coherence when the noise level is decreased. We also 

explore the role of particle density and exposure duration in the recovery process. Our work 

contributes to the broader understanding of dynamic phase transitions in active systems and 

offers insights relevant to both natural and engineered collectives. 

MATHEMATICAL MODEL DESCRIPTION 

We use a two-dimensional variant of the Vicsek model. Every particle is represented by its 

position �⃗�𝑖(𝑡) and velocity direction 𝜃𝑖(𝑡). The position of the particles: 

�⃗�𝑖(𝑡 + 1) = �⃗�𝑖(𝑡) + 𝑣0�⃗�𝑖(𝑡)                               (i) 

where𝑣0 is the constant speed and �⃗�𝑖(𝑡) = (cos(𝜃𝑖) , sin(𝜃𝑖)). 

The direction 𝜃𝑖 is updated using the average direction of neighboring particles within a radius 

𝑅, perturbed by angular noise: 

𝜃𝑖(𝑡 + 1) = 〈𝜃(𝑡)〉𝑅 + 𝜂𝜉𝑖(𝑡)                             (ii) 

Here, 𝜂 is the noise amplitude and 𝜉𝑖(𝑡) is a variable which is random and uniformly distributed 

in [−
1

2
,
1

2
]. 

SIMULATION PARAMETERS 

Number of particles 𝑁 = 1000, Speed 𝑣0 = 0.03, Interaction radius 𝑅 = 1, Noise amplitude 𝜂 

varied from 0 to 1.0 in steps of 0.05, Box size =10, periodic boundary conditions are given in 

2D, and Simulation time = 10,000 steps. 

ORDER PARAMETER 

Order parameter is used for the purpose to categorize collection of the SPPs 

Φ(𝑡) =
1

𝑁
|∑ �⃗�𝑖(𝑡)

𝑁
𝑖=1 |                                        (iii) 

RESULTS 

DISRUPTION OF COLLECTIVE MOTION 

At low noise levels , the order parameter  remains close to 1, indicating strong alignment and 

coherence. As noise increases beyond a critical threshold (~0.5),  sharply drops, signaling the 

transition to disordered motion. This critical point shifts slightly depending on the particle 

density. 
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FIGURE 1.  Collective motion as a function of noise 

Order parameter Φ plotted against noise amplitude 𝜂. The results show a sharp decline in global 

alignment as noise increases, indicating a transition from ordered to disordered motion. 

 

FIGURE 2.  Demonstration of the collective motion of SPPs at different noise values. 
 

The left figure 2 shows the ordered state with all particles aligned at low noise (𝜂 = 0.1), and 

the right figure2 shows the disordered state with random orientations at high noise (𝜂 = 1.0). 

These plots visualize the breakdown of collective motion due to noise. 
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RECOVERY AFTER NOISE REDUCTION 

When high noise (e.g., 𝜂 = 0.6) is applied for a limited duration and then reduced back to 

𝜂 = 0.1, the system shows a gradual increase in Φ, indicating partial recovery. The recovery is 

faster and more complete at higher particle densities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.  Time evolution of Φ following a reduction in noise. The recovery trajectory 

depends on the initial noise level, with higher 𝜂 causing slower or incomplete recovery.   

FIGURE 4.  Snapshots showing directional alignment of particles at different recovery 

stages.At , particles are disordered; by , alignment is largely restored. 
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Three noise values tested. All suggested similar kind of the behaviour at initial stage of the 

simulation where particle showed less collective motion. Soon after the 20th time step there 

appeared a rise in the value of the order parameter. At the 100th time step a higher collective 

motion found in the system which suggested a stability in the collective motion. This is evident 

in the figure 3 and figure 4. 

PHASE DIAGRAM 

We constructed a phase diagram mapping the steady-state Φ values over the (η,ρ) space. Three 

distinct regions emerge: fully ordered, disordered, and recoverable phases. 

FIGURE 5.  Phase diagram of order parameter over noise and density. 

 

Phase map of the system over noise amplitude 𝜂  and particle density 𝜌 . The color scale 

represents the average order parameter Φ , revealing regions of ordered, disordered, and 

recoverable behavior. 
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FIGURE 6.   Arrow plots showing directional patterns in three regions of the phase diagram 

 

CLUSTER DYNAMICS 

Noise disrupts large clusters and results in more uniform distributions. Post-recovery, clusters 

reform if the system retains sufficient density and time to re-align. 

FIGURE 7.  Demonstration of cluster size distribution. 

 

Histogram comparing cluster size distributions across ordered, recovering, and disordered 

phases. Ordered states show large clusters, while disordered states exhibit numerous small 

clusters. 
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DISCUSSION 

our findings confirm the presence of a critical noise threshold beyond which collective order 

breaks down. This threshold demarcates a clear transition from coherent, collective motion to 

disordered, random behavior. The nature of this transition is critical and is particularly evident 

in the sharp decline of the order parameter as the noise increases to a specific value, which 

varies slightly depending on particle density(Zhang, 2021). This behavior is consistent with 

phase transitions observed in other non-equilibrium systems and supports the theoretical 

predictions made by earlier studies using the Vicsek model (Soomro I. A. I., 2019). 

More importantly, we have demonstrated that the system's ability to recover coherence 

after noise reduction is not only possible but strongly dependent on both particle density and 

the duration of exposure to high noise. Higher densities facilitate more rapid and complete 

recovery, likely due to increased interaction frequency among particles. Conversely, prolonged 

exposure to strong noise can lead to persistent disordered configurations that take longer to 

reorganize, or may even fail to recover entirely(Chaté, 2008). These dynamics illustrate a form 

of hysteresis in active systems, where the path of recovery is not simply the reverse of 

disruption.Their simulation outcomes will have valuable information about the robustness of 

active matter systems. In ecology, this resilience may form the basis of how bird flocks, fish 

schools, or bacterial colonies can reorganize themselves in reaction to disturbances. In man-

made systems (e.g. swarm robotics), the same findings open up the possibility that local 

communication and density control might be essential in re-establishing coordination after 

system-level failure or environmental noise. 

On a design standpoint, the phase diagrams and cluster behavior studies provide handy 

guidelines on developing fault-tolerant systems capable of retaining or recovering performance 

against noisy backgrounds. As an example, recoverability might be guaranteed by keeping the 

particle density above some measure, even in the presence of either fluctuating or stochastic 

inputs. Also, re-align capacity implies that mechanisms can be enhanced by system-wide re-

synchronization regimes or coordination polls. 

 

CONCLUSION 

We investigated in this paper how stochastic noise can interfere with and affect the collective-

motion recovery of self-propelled particle systems. A Vicsek-type model helped us find a critical 
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noise level that defines a transition between the disordered and ordered states. We also 

demonstrated that the recovery can occur under the condition of reduced noise, where particle 

density and exposure time are important factors that define the extent and rate of re-

alignment.Order parameter analysis, phase behavior, and cluster distributions promoted 

distinctive regimes of system behavior: entirely ordered, disordered, and partially recoverable. 

The results help in gaining insights into the robustness of the active matter system and 

conditions under which self-organization becomes possible following perturbation. Our 

findings can be used in future studies and applied works with biological masses and engineered 

swarming systems, especially in a noisy or dynamic environment. 
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