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Cost optimization is widely considered a critical aspect of resource management 
in current cloud computing scenarios to consider service quality, resource 
utilization and SLAs. The traditional static or the rule based algorithms are not 
well suited to handle the dynamics, heterogeneity and variability of workloads 
usually found in cloud data centers of vast sizes. To address these challenges, 
the current research introduces an intelligent resource allocation framework 
that uses machine learning. In particular, the workload prediction is achieved 
with a Random Forest model, while the resource management, scheduling, and 
auto scaling is done by a Deep Q-Learning agent. The proposed framework was 
tested with CloudSim Plus simulator and Google Cluster Trace dataset 
comparing its performance with FCFS, Round Robin and threshold-based 
methods. It is seen that the resource utilization increases up to 85.3%, SLA 
violation is reduced to 4.1% and the cost of execution is reduced by 28% which 
is based on conventional strategies where the throughput of the tasks achieved 
is 674 tasks per hour. The results demonstrate how machine learning can help 
build smarter, efficient, and cost-aware cloud applications and infrastructure to 
support responsive and autonomously optimizing cloud systems. 

 
   

 
 

INTRODUCTION 
Cloud computing has emerged as a “revolutionary” phenomenon in the field of computing since 

it provides scalable, flexible and affordable solutions through resource provisioning. 

Computing, storage and networking services that do not require individuals and companies to 

make capital investments in IT hardware assure a broad variety of uses, including web hosting, 

scientific modeling, storage of massive amounts of data, and artificial intelligence (Mell & 

Grance, 2011). The elasticity and the multi-tenancy of the cloud platforms therefore poses a 

major problem of resource management. Efficient utilization of these resources is desirable for 

QoS provision, reduction of operational costs while at the same time meeting stringent SLAs 

(Buyya et al., 2009). 
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Current techniques in resource management mainly incorporate techniques like fixed  

thresholding, rule based scaling and simple scheduling algorithms (Beloglazov and 

Buyya, 2012). These methods are simple and do not consume much CPU cycles, but are not 

effective for the dynamic and diverse workloads of the cloud computing systems. Static rules 

are not dynamic enough to work at real-time; therefore, this issue leads to over-provisioning, 

making the costs high or under-provisioning, which results in poor performance and a breach 

of the agreed service level (Calheiros et al., 2011). Additionally, with the introduction of 

containers, microservices, and serverless services the nature of workloads varies and splits into 

a far larger number of smaller parts, which requires even more sophisticated approaches. 

In order to overcome these limitations, there is an approach toward utilizing machine 

learning (ML) as an efficient solution for intelligent resource management in a cloud 

computing environment. With the use of ML, systems can analyze prior data, anticipate future 

usage of resources, and independently make allocation decisions (Xu et al., 2020). ML models 

are different from static algorithms in the sense that they can easily identify nonlinearity 

present in associations between a large number of metrics such as CPU usage, memory 

consumption, and network bandwidth. For example, for prediction of resource usage, 

regression based models have been used and for the purpose of workload grouping, clustering 

methodologies are used (Qiu et al., 2016; Zhang et al., 2020). Reinforcement learning (RL) 

strategies have also been employed as the agents learn the best resource allocation strategies 

through trial and error within the environment whereby the performance of the system is 

either rewarded positively or punished (Mao et al., 2016). 

Recent developments in the field of deep learning took the existing possibilities of the use of 

ML for cloud resource control to a new level. DNNs, LSTM, and CNNs have the ability to 

cater the workload prediction of time-series and perform spatial-temporal resource examination 

(Tang et al., 2020; Chen et al., 2019). When connected with cloud orchestrations such as 

Kubernetes or OpenStack, these models can proactively control resources consisting of VMs, 

containers, and services based on the current application traffic. Besides, integrating ML with 

control theory, metaheuristic, or fog-edge computing models have also been proposed to solve 

MOOPs in large distributed systems (Wang et al., 2021). 

However, the following issues are still issues; Some important questions that arise are 

the ability to generalize the ML models across all forms of clouds and workloads that can be 

unpredictably distributed. In one circumstance, a particular model may not be as effective in 
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another due to variations in peculiarities, in terms of the available hardware, flow volumes, or 

the specifications of the applications (Islam et al., 2012). Another issue is the training and 

deployment times that need to be put into the models and the other resources that are used to 

train them that may counterbalance the efficiency gains on the usage of resources. Also, there 

are challenges in terms of data privacy and security when training models from user level 

telemetry data, particularly when the case is multi-tenant public cloud (Liu et al., 2021). 

Therefore, the purpose of this paper is to discuss a novel machine learning based 

intelligent resource allocation framework for cloud computing. This paper examines the use of 

supervised learning and deep reinforcement learning to improve workload distribution, cost 

optimization and system performance. In simulation-based experiments, the presented 

approach is compared with other resource management techniques in a real-world experimental 

setup consisting of three real datasets. 

This paper also attempts to blur the line between prediction and decision-making in 

order to allow a scalable, adaptive, and cost-efficient resource management to fit the next 

generation cloud environments. 

LITERATURE REVIEW 

Resource management in cloud computing has been a major issue of concern over the past 

decade given that resource management is a critical determinant on the achievement of efficient 

utilization of Virtualized resources while adhering to contractual service level agreements. In 

the past, the approaches used to manage the resources in the cloud systems were Rules based or 

the threshold mechanisms. Despite their simplicity and low computational costs, they are less 

effective in such dynamic contexts where workloads are stochastic and volatile as has been 

pointed out in Kliazovich et al. (2013). In recent years, therefore, there has been a shift towards 

intelligent and autonomous approaches to the field where ML is well equipped to play a 

significant role. 

In the initial years of the implementation of ML techniques in the domain of cloud 

computing, research investigations were mainly centered on the use of the approach to predict 

the demand for IT resources. For example, Lama and Zhou (2012) discussed a framework of 

predicting resource provisioning through a past workload and an adaptive provisioning scheme 

based on the queuing theory and linear regression. Similarly, Yazdanov and Fetzer (2013) used 

time series analysis for the proactive computation of VM provisioning that aimed at preventing 
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SLA violations. These models were precursors to more complex ML-based techniques yet were 

weak, rigid, and linear in the sense that they could only handle simple patterns of workloads. 

When the concept of workload classification started emerging, classification techniques 

evolved and later clustering technologies became stronger to support the consolidation of 

workloads. Paya, and Marinescu in 2014 integrated a workload classification model that 

utilized support vector machine (SVM) for a better decision making on scale-out on IaaS 

clouds. In the same case, Goudarzi et al. (2015) used the k-means clustering technique to easily 

cluster similar workloads for the purpose of resource pooling. These approaches considerably 

cut down wastage of resources through making sure that the VMs that were likely to consume 

resources in the same manner were assigned to the same physical resources. 

In recent times, deep learning techniques have been explored in view of their capability 

to address the scatters and concealed patterns in the use of resources. Al-Dhuraibi et al. (2018) 

applied deep belief networks in auto-scaling of containerized application on cloud through 

showing that it outperforms shallow models in terms of accurate predictions. Moreover, Zhang 

et al. (2019) proposed CNNs to capture the spatial dependencies between consumption of 

resources in the physical hosts of a data center and enhance load distribution and energy 

utilization. These technologies represent a transition from men and women to products that 

can forecast and autonomously modify. 

Reinforcement learning is also known to be a credible approach for dynamic resource 

management. RL differs from supervised learning in the sense that RL does not necessarily 

require a sample of labeled data sets but learns from the environment. In Chen et al. (2019), 

they used Q-learning track to implement a scheduler for resource management in 

heterogeneous cloud systems which revealed that RL can help optimize cost and performance. 

Similarly, Xu and Li (2020) proposed a deep reinforcement learning approach that aims at 

maximizing uninterrupted validation of VMs in which agents choose VM placement to 

minimize latency and migration costs. Especially in cloud environments where the loads vary 

dramatically and can increase or decrease unpredictably, the flexibility of RL is highly useful. 

There are proposals to integrate metaheuristic optimization algorithms including: 

genetic algorithms, ant colony optimization, and particle swarm optimization with the basic 

ML to scale up and support more efficient search. For instance, Laroia and Sood (2021) 

presented a hybrid model of the neural network and PSO algorithm for improving the task 

scheduling in a multiple cloud environment. As stated by Their, they worked on the issues of d 

http://amresearchreview.com/index.php/Journal/about


http://amresearchreview.com/index.php/Journal/about 

Volume 3, Issue 4 (2025) 

 

 

 

530 
  

http://amresearchreview.com/index.php/Journal/about 

Page 530 

DOI: Availability 

being the execution time significantly reduced as well as the amount of energy consumed was 

also reduced greatly. Additionally, Kumar et al. (2020) proposed the integration of fuzzy logic 

and genetic programming to further enhance the context-based decision making in VM 

allocation, in the context of a multi-tenant public cloud environment. 

There are other goals which have also been crucial in intelligent cloud resource 

management and one of them has been the aspect of cost efficiency. To this end, several works 

have included economic models and pricing mechanisms into ML-based decision systems. A 

cost-aware autoscaler was presented by Son and Buyya in the year 2017 which specifically uses 

the ensemble learning models and the price of the spot and on-demand instances. Such work 

proved that predictive auto scaling could bring up to 30% of cost reduction without impact on 

application performance. In the same vein, Lu et al. (2020) proposed to include budget-aware 

policies in the LSTM-based scheduler to address the latency and budget constraints for the 

workloads. 

However, there are still issues in the deployment of the system in a real-world setting. 

A critical factor is the time it takes to train the LA model and perform inference because it can 

erase the GPE if not addressed appropriately (Zhou et al., 2019). Furthermore, even models 

that are trained in a testbed platform do not perform well when implementing for simple 

production servers, this is because of drifting of concepts, and changes in the servers workload. 

In regard to this, Ramezani et al. (2021) proposed employing online learning methodologies 

that update models with fresh data so that they are continuously accurate for real-time data 

streams. 

However, another challenge linked to the use of ML models is the interpretability of the 

models. The use of deep models enhances predictive capacity, yet it undermines interpretability 

hence lack of trust among administrators (Doshi-Velez & Kim, 2017). XAI solutions have 

begun to be used in cloud resource management systems to bring the explanations to it. For 

example, Bhat et al. (2022) used SHAP (SHapley Additive exPlanations) while explaining the 

output of a cloud load balancing model with the aim of enhancing trust and debugging 

activities. 

Other important factors involve security and privacy which are crucial especially when 

using the multi-tenant as well as public clouds. They concluded that training data for ML 

exposes the usage patterns that are not intended by their owners. Homomorphic encryption 

and federated learning are two approaches that are being discussed as possible ways to 

http://amresearchreview.com/index.php/Journal/about


http://amresearchreview.com/index.php/Journal/about 

Volume 3, Issue 4 (2025) 

 

 

 

531 
  

http://amresearchreview.com/index.php/Journal/about 

Page 531 

DOI: Availability 

maintain privacy while still keeping the models‟ effectiveness (Shokri & Shmatikov, 2015; 

McMahan et al., 2017). Research in this regard is still limited but the ground has been prepared 

to offer a highly secure as well as intelligent way of operating cloud. 

As an overall observation, the literature reveals an increasing concern of integrating 

machine learning to cloud resource management. From the initial deterministic models to the 

usage of Deep Reinforcement learning algorithms and other hybrid optimizations methods, it 

was possible to see the benefits of workload distribution, cost and the ability to satisfy SLA. 

However, issues of model portability, interpretability, as well as, privacy are some of the 

contemporary topics under research. The present study is an extension and enhancement of 

these frameworks by suggesting a stacked-MLS for workload prediction, real-time decision 

making and cost-sensitive policies. 

METHODOLOGY 

RESEARCH DESIGN AND OBJECTIVE 

In this research, the main goal is to develop, deploy, and assess the effectiveness of a machine 

learning model for the optimal dynamic allocation of workload in a cloud computing 

environment. In this regard, we developed a simulation framework that incorporates predictive 

analytics and reinforcement learning to simulate, analyze, and refine the patterns of resource 

allocation, workload distribution, and cost-effectiveness. To structure this paper, the authors 

used an experimental simulation approach that allows not only a theoretical comparison of the 

presented work to traditional scheduling and provisioning algorithms but also a practical 

assessment of the proposed machine learning model‟s performance. 
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SIMULATION ENVIRONMENT SETUP 

To conduct all these experiments, we used CloudSim Plus tool which is an enhanced version 

used for modeling and simulating cloud computing environments. CloudSim suggests the 

possibility of eliciting and modeling virtual data centers, virtual machines, application loads, 

and resource provisioning. In order to mimic the practical data center environment of the 

cloud, we created a virtual data center network with 100 physical hosts having different 

amounts of resources such as vCPU and RAM ranging from 8-64 vCPU and 16-128 GB RAM 

respectively. These hosts hosted up to 1000 Operating system virtual machines with a number 

of workloads compared with CPU, memory and End I/O. 

DATASET AND WORKLOAD GENERATION 

Thirdly, to test the system under real-world scenarios, we employed workload traces derived 

from the Google Cluster-Net environment. In this dataset, it has detailed information about the 

usage of the resource collected over the periods of thousands of tasks on Google production 

cluster such as CPU and memory usage and disk and network I/O. Most of the inputs were in 

textual form and thus the first pre-processing step was to time standardize the data, filter out 

noise, and discretize or categorical the inputs to machine learning compatible format. The 

workloads were categorized into short, medium and long based on their duration and their 

resource usage patterns were obtained and used to create the training and testing data set. 

MACHINE LEARNING MODELS 

We used a double-tiered structure: a prediction level based on the supervised learning and an 

allocation level based on the deep reinforcement learning. In the supervised prediction model, 

the classification algorithm used is the Random Forest Regressor model because of its high 

accuracy compared to models with low variance in the number of resources required. The 

model was trained for forecasting the resource usage (CPU and memory load) using the 

historical time-series data for the next 5, 10, 15 minutes ahead. Such performance features 

consisted of usage history measures, task characteristics, time-related variables such as hours of 

the day, and task dependency. 

In the allocation layer, there was the application of the Deep Q-Network (DQN) that is 

a reinforcement learning algorithm where an agent meets the environmental challenge through 

a trial-and-error process. The state space ranged from current VM load levels, and estimated 

arrival of workload, and current pricing strategies. The action space included the decision on 

whether to assign a particular task to that VM, to migrate tasks, or perform scale up / scale 
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down actions on the VMs. The weight of the reward function was designed based on the 

following objectives, including less than one SLA violation, low execution cost, the prevention 

of VMs from being overloaded, and load balance among the hosts. The best practices included 

bonuses which were provided to the officials for lowering the cost of actions, boosting the 

utilization and fines for non- compliance with service level agreements, and high levels of 

migrations. 

TRAINING AND VALIDATION 

Random Forest was applied with 80-20 train-test split, while the number of trees, maximum 

depth, and minimum samples per leaves have been tuned by applying 5-fold cross validation. In 

particular, training of the DQN agent was performed over 10,000 episodes using epsilon-

greedy policy to allow the agent to explore the environment while exploiting it at the same 

time. In addition to that, to stabilize learning we had to incorporate experience replay and to 

increase convergence rate, we had to use target networks. The evaluation of the reinforcement 

learning model entailed monitoring the total reward over time and monitoring the 

improvement in resources consumption and expense ratings in contrast to initial tactics. 

BASELINE ALGORITHMS FOR COMPARISON 

To compare the effectiveness of the proposed framework with baseline measures, three 

Benchmark approaches were implemented; (i) FCFS, (ii) RR, and (iii) a static threshold Auto 

scaling. All these methods were tested using the exact same simulation platform with the direct 

corresponding workflow. The obtained results were calculated and compared with four 

important criteria, which include, average resource utilization, SLA violation rate, load 

imbalance index and total cost of the operation. 

EVALUATION METRICS 

To assess the effectiveness of the intelligent resource allocation system, the following 

quantitative indicators were employed: 

Resource Utilization Rate (RUR): The average percentage of CPU and memory utilization 

across all VMs. 

SLA Violation Rate: The percentage of requests that experienced performance degradation or 

unmet latency requirements. 

Load Imbalance Index (LBI): It can be measured in terms of the standard deviation of the 

utilization of the resources allocated to the different VMs; this gives an indication of how 

balanced or skewed the workloads are. 
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Execution Cost: All expenses related to actually running VMs, depending from pricing 

strategies (on-demand or spot instances). 

Task Turnaround Time: The time spent within the interaction loop, starting from the 

moment a user submits a task and ending with the time when the output is available. 

In each of the simulation scenarios, the above metrics were repeated five times with 

random seeds, and the average number of results recorded in a bid to enhance credibility of the 

results. These included calculating standard deviation and confidence intervals as measures of 

variation. 

RESULTS  

CPU AND MEMORY UTILIZATION 

The first set of results (Table 1, Figure 1), quantifying the number of instructions executed per 

microsecond with respect to the total memory size, unifies this observation. The Random 

Forest + DQN approach outperforms all traditional methods in both average and peak resource 

utilization. Particularly, it offered 83.2% of average CPU and 87.4% of memory usage, which 

was closer to the best recorded under FCFS (59.1% CPU and 63.3% memory). It is also 

observed on the peak usage, making us to believe that the relative to the machine learning 

strategy is both efficient and fully utilized most of the time. Figure 1 also supports these 

findings by presenting distinctly separated bars that exhibit the optimization obtained by 

intelligent prediction and adaptive learning. 

TABLE 1: CPU AND MEMORY UTILIZATION 

Method Avg CPU 

Utilization (%) 

Avg Memory 

Utilization (%) 

Peak CPU 

Utilization (%) 

Peak Memory 

Utilization (%) 

FCFS 59.1 63.3 89.2 85.1 

Round Robin 62.8 68.0 91.5 88.3 

Threshold-

Based 

68.3 71.9 94.0 91.7 

Random 

Forest + 

DQN 

83.2 87.4 97.8 96.2 
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FIGURE 1: CPU AND MEMORY UTILIZATION 

 

SLA COMPLIANCE AND QUALITY OF SERVICE 

As shown in Table 2 and Figure 2, the penalty costs associated with SLA violations are 

minimized by the proposed method. FCFS and Round Robin had higher violation rates of 

14.8% and 12.3% by average and these showed relation with more and more downtime and 

retry count. However, the ML-based model lowered SLA breach instances to 4.1%, $51.6 as 

penalty cost, and only 19 retasks per day. This decrease can be explained by the improved 

model accuracy and better proactive identification of the next patient requiring attention. 

These are illustrated by Figure 2 in the form of a scatter plot which shows how higher 

violation rates decrease the SLA costs, implying the economic implications of effective 

management of resources. 

TABLE 2: SLA AND QOS METRICS 

Method SLA Violation 

Rate (%) 

Avg SLA 

Penalty Cost ($) 

QoS Downtime 

(min/day) 

Task Retry 

Count 

FCFS 14.8 240.5 32 138 

Round Robin 12.3 196.2 24 94 

Threshold- 9.7 144.3 17 57 
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Based 

Random Forest 

+ DQN 

4.1 51.6 6 19 

FIGURE 2: SLA VIOLATION AND PENALTY COST 

 

LOAD DISTRIBUTION AND TASK MIGRATION 

Proper workload distribution is crucial to avoid overloading individual VMs and to reduce the 

utilization rate. As seen in Table 3 and Figure 3, the Load Imbalance Index reduced from 0.45 

(FCFS) to 0.15 with the intelligent allocation system thus showing a high level of load 

balancing. There were also the fewest number of migration events in the task that followed the 

ML-based approach because the initial allocation was much more efficient in identifying 

appropriate task assignments and load distribution. Furthermore, the number of overload 

instances in virtual machines and underutilized hours of Virtual Machines were reduced by 

applying the ML model and this justified the efficiency of the system in distributing workloads 

evenly to the available resources. These assertions are supported when we analyze figure 3, 

which shows the actual trends in the task migration events under the proposed ML model. 
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TABLE 3: LOAD DISTRIBUTION METRICS 

Method Load 

Imbalance 

Index 

Task 

Migration 

Events 

VM Overload 

Instances 

Underutilized VM 

Hours 

FCFS 0.45 210 71 312 

Round Robin 0.37 179 53 240 

Threshold-

Based 

0.32 126 35 178 

Random 

Forest + DQN 

0.15 78 9 66 

FIGURE 3: MIGRATION EVENTS 

 

COST EFFICIENCY ANALYSIS 

Therefore, the cost breakdown presented in Table 4 and Figure 4 indicated that Random 

Forest + DQN tends to give the smallest cost of execution of $ 960. These benefits include low 

energy consumption, low VM overhead from migration, and unnecessary VM creations. Figure 

4 captures the comparison of costs and it is quite evident that the ML method more evenly 

sprinkles cost reductions in all subcategories including energy and VM provisioning and 

http://amresearchreview.com/index.php/Journal/about


http://amresearchreview.com/index.php/Journal/about 

Volume 3, Issue 4 (2025) 

 

 

 

538 
  

http://amresearchreview.com/index.php/Journal/about 

Page 538 

DOI: Availability 

therefore trying to depict the overall economic optimization as opposed to mere optimization of 

some aspects. FCFS, on the other hand, had the highest total costs as a result of many SLA 

violations, excessive energy consumption, and incorrect scaling up. 

TABLE 4: COST BREAKDOWN 

Method Execution 

Cost ($) 

VM Allocation 

Cost ($) 

Energy 

Cost ($) 

Migration Overhead 

Cost ($) 

FCFS 1340 820 410 110 

Round Robin 1285 790 385 110 

Threshold-

Based 

1170 710 320 140 

Random Forest 

+ DQN 

960 560 260 140 

FIGURE 4: COST BREAKDOWN 

 

TASK-LEVEL PERFORMANCE 

From Table 5 and FIGURE 5, task performance metrics indicate that the proposed ML-driven 

system contributes to accomplishing tasks with less time and higher consistency. Effectiveness 

of tasks were also enhanced by the short average job throughput cycle time of 98.4 seconds 
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compared to FCFS with 142.3 seconds. Also, there was a smaller variance and range of the task 

completion time values for the ML setup, which indicated more stable performance on various 

workloads. It is noteworthy that figure 5‟s boxplot format helps underscore the decreased 

amount of variance and increased effectiveness of the resulting schedules when achieved 

through ML. 

TABLE 5 : TASK PERFORMANCE METRICS 

Method Avg Task 

Completion Time 

(s) 

Task Completion 

Std Dev (s) 

Longest Task 

Duration (s) 

Shortest Task 

Duration (s) 

FCFS 142.3 18.4 278.6 45.1 

Round Robin 132.7 15.9 256.2 40.2 

Threshold-

Based 

120.5 12.2 240.7 36.8 

Random 

Forest + 

DQN 

98.4 9.1 189.3 30.4 

FIGURE 5: TASK COMPLETION TIME 

 

http://amresearchreview.com/index.php/Journal/about


http://amresearchreview.com/index.php/Journal/about 

Volume 3, Issue 4 (2025) 

 

 

 

540 
  

http://amresearchreview.com/index.php/Journal/about 

Page 540 

DOI: Availability 

SYSTEM THROUGHPUT AND SUCCESS RATES 
Table 6 and Figure 6 summarise the system‟s overall productivity in terms of tasks per hour 

and success rates, where the ML model was identified to have performed the highest tasks per 

hour of 674 and the highest success rate of 99.1%. Concurrent VM usage was also lower in this 

case, which was 190; this was an indication of better density for workload. Availability of 

resources increased to 96.7% for the virtual machines, proving that the strategies implemented 

as described in this paper are effective in reducing the overall idle time for the resources. Trend 

lines in figure 6 also demonstrate these insights by presenting results that illustrate the 

effectiveness of the ML-based approach in terms of throughput and success rates. 

TABLE 6:  SYSTEM THROUGHPUT METRICS 

Method Tasks per 

Hour 

Concurrent VMs 

Used 

Successful 

Executions (%) 

VM Uptime 

(%) 

FCFS 486 250 91.3 85.2 

Round Robin 523 230 93.6 88.4 

Threshold-Based 590 215 96.8 91.5 

Random Forest 

+ DQN 

674 190 99.1 96.7 

 
FIGURE 6: THROUGHPUT AND SUCCESS RATE 

 
AUTO SCALING BEHAVIOR 
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Autoscaling efficiency is important to evaluate an adaptive resource management system. In 

reference to Table 7 and Figure 7, it is evident that the ML approach was the most adaptive to 

changes in workload across the scales performing more scale-up, that is, 58, compared to scale-

down, that is, 61. Conversely, the average scaling delay was the lowest at 9.8ms and the 

autoscaling accuracy was the highest at 94.6%. This action shows that the intelligent system 

responds more quickly, while doing so with great accuracy, learning from past experience and 

estimating resources required. The grouped bars in Figure 7 permit an attempt to compare the 

scaling behaviors of all methods conveniently. 

TABLE 7:  RESOURCE SCALING METRICS 

Method Scale-Up 

Events 

Scale-Down 

Events 

Avg Scaling 

Delay (s) 

Autoscaling 

Accuracy (%) 

FCFS 24 19 23.6 64.2 

Round Robin 31 28 21.4 72.8 

Threshold-Based 45 39 17.5 85.3 

Random Forest 

+ DQN 

58 61 9.8 94.6 
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FIGURE 7: AUTOSCALING EVENTS 

 

RESOURCE WASTE AND REDUNDANCY 

Lastly, Table 8 & Figure 8 below show how effective the system is in minimizing the wastage 

of resources. In implementation of the ML model, the CPU and RAM hours were significantly 

overemphasized to average at 26 and 31 hours at most. The utilization of VM starts also 

showed a significant improvement, the number of redundant VM startups fell to only 13 and 

the wasted cost on unnecessary VMs also reduced to $28.3. These savings were from improved 

provisioning and real-time amassing as the model was capable of preventing mass distribution 

of resources in moments of low usage. Figure 8 visually illustrates waste metrics comparing the 

four systems with small bars for the ML model proving that the system can help control 

ineffectiveness. 
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TABLE 8: RESOURCE WASTE METRICS 

Method Idle CPU 

Hours 

Idle RAM 

Hours 

Redundant VM 

Startups 

Wasted Cost on 

Unused VMs ($) 

FCFS 114 122 47 152.0 

Round Robin 98 105 38 123.5 

Threshold-

Based 

74 83 29 98.6 

Random Forest 

+ DQN 

26 31 13 28.3 

FIGURE 8: RESOURCE WASTE METRICS 

 

DISCUSSION 

Therefore, the result of this study supports the positive impact of ML algorithms in this field, 

especially in the space of resource management for cloud computing . The proposed ML model 

with Random Forest for workload prediction and Deep Q-Learning for the allocation policy 

outperforms the conventional resource management policies such as FCFS, Round Robin and 

threshold-based auto scaling methods. These enhancements, based on different aspects such as 

resource capacity, utilization, availability, task volume, and operational expenses show that it is 
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critical for enterprises to have intelligent and adaptive infrastructural systems to handle larger 

and hybrid cloud systems. 

This extends prior findings suggesting that predictive analytics can help in the 

reduction of resource wastage in non rigid environments such as elastic structures. Combining 

Random Forest with the obtained workload parcels dimension enabled the system to predict 

workload and allocate resources long before they are needed, which reduces under-utilization 

completely, as well as over-provisioning. This aligns with the conclusion drawn by Gandhi et 

al. (2014) where they showed that integrating provision for workload led to enhanced resource 

utilization efficiency and that this improved when augmented with machine learning forecasts. 

Thus, the comparatively low SLA violation and penalty cost in our system here really 

indicate the increase in QoS which is feasible through an efficient use of the proposed 

intelligent allocation strategies. This supports the work of Tang and Li (2019) who noted that 

when QoS metrics are incorporated directly in the decision policies especially in reinforcement 

learning then the systems are able to achieve better trade-offs between performance and 

guarantees. Our system‟s RL was based on past operations in SLA violations to inform 

allocation decisions in the future, thus demonstrating the effectiveness of self-adaptive systems 

during dynamic operational conditions. 

One of the significant concerns in our work is designing a reward function that 

optimizes multiple objectives: minimizing cost, load, and achieving SLA compliance 

simultaneously. This multi-objective optimization is different from previous studies where 

there is only a targeted parameter of optimization. For example, Zaman and Grosu (2013) 

considered the economical objectives without focusing QoS constraints as we encapsulate both, 

the economical utility and customer satisfaction. The result is a more effective and sustainable 

public dispensation for public needs and expectations from varying and multiple stakeholders. 

We also found that there is tremendous value in „intelligent autoscaling‟. Self-scaling 

strategies in traditional autoscalers are typically based on threshold violations or event-driven 

triggers that are often reactive and can result in resource allocation proactivity at the wrong 

time (Islam et al., 2010). However, our proposed model of RL agent was able to scale up and 

down in a proactive manner and hence the speed and accuracy was much better. Other related 

work of this nature includes the work done by Roy et al. (2021) where contextual bandits were 

used in opting for the appropriate time and policy for auto scaling cloud resources. However, 

based on the results of this study, deep reinforcement learning that allows the model to 
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preserve and update its value functions for the existence of state transitions within a long and 

constantly changing environment appears more resourceful. 

Moreover, lower energy consumption and fewer VM startups in the presented study 

contribute to the increase in works focused on green cloud computing. Power demand is 

another crucial issue in data centers, as these facilities consume about one percent of the world‟s 

electricity as stated by Shehabi et al. (2016). The proposed model reduces idle times and 

minimizes the number of migrations, thus aligning with the objectives of sustainability and 

environment conservation as pointed out in Beloglazov et al. (2011) discussing the efficient 

management of resources in a data center. 

However, there are certain drawbacks and issues that need to be addressed in the 

current study in particular. A challenge relates to the execution time and memory of time and 

memory required to develop and implement these models in production environments. While 

the training was performed offline in our study, real-time inference even with optimized models 

needs computational power resources which might somewhat off-set the gains made in terms of 

cost or energy consumption. Similar observations were made by Yu et al. (2018) stating that 

deep learning models efficiently must be integrated into the latency sensitive systems without 

compromising the services delivered to the user. 

Another problem is related to generalization of the model. This is because our system 

that was built and tested on large-scale, I/O intensive trace collected from google clusters may 

not be optimized to work for other types of workloads or from other industries or from 

different platforms which may involve heterogeneous infrastructures. These become 

threatening the effectiveness of such systems and possible solutions in this regard are transfer 

learning and federated learning. Kairouz et al. (2021) report that federated learning, 

specifically, enables models to be trained across various nodes without absorbing data in a 

central hub, which leads to reduced privacy and increased flexibility for different fields. 

Including such mechanisms could potentially strengthen the proposed system and make it more 

private even when the system is used by multiple clients or a combination of private and public 

cloud computing. 

From a theoretical point of view, this study contributes to the growing literature on 

self-managing cloud systems known as autonomic computing (Kephart & Chess, 2003). This 

capability can be considered as self-optimization of the system or decision-making since the 

DQN Agent makes the decisions without the direct interference of humans. Thus, the result of 
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the present research supports the hypothesis of using a two-tiered solution, which consists of 

the prediction layer and remote control layer managed by different ML algorithms. 

The implications of these findings are far reaching in a practical sense. CSPs stand to 

gain by adopting such allocation models driven by ML to reduce the cost of operations, 

increase customer satisfaction resulting from better SLA compliance, and to address energy 

efficiency requirements. Also, with different IaaS models, IT cost and performance become 

more balanced and manageable and thus improve the enterprise‟s ability to budget its 

expenditures. From both a private and public cloud provider perspective, creating an 

architecture that allows for the implementation of ML in many of the middle and low-level 

orchestration frameworks is a point of differentiation in a very competitive market. 

Therefore, the combination of prediction using supervised learning and policy update 

using deep reinforcement learning is found to be valid and relatively efficient for the task of 

resource allocation in cloud environments. However, there are concerns about overhead, 

generalization and interpretability, nonetheless, the potential benefits are great consisting of 

efficiency, responsiveness and cost. Future studies should look at the combination of 

explainable AI (XAI), light deep learning frameworks, and distributed intelligence for the 

development of such systems to be more transparent, easy to sustain, and scalable for large-

scale use. 
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