
VOL-3, ISSUE-2, 2025

Page 54

Abstract
Deep learning is the ultimate breakthrough of artificial
intelligence and it will change the world dramatically in
this century. Various type of deep neural networks has been
used to resolve challenging computer vision problems such as
detection, localization, recognition and segmentation of objects
in the wild. Semantic segmentation to separate a portrait from
the video background. Semantical Segmentation. This process
essentially closes the image bits based on an object class to
vacuum them together. In this paper we differentiate four
separate deep learning models that we trained to provide real -
time webcam video segmentation of portrait images, and
analyze performance on the respective phases. They employ
two distinct deep learning architectures and they employ two
different datasets. Their data sets more than 30,000 human
portrait images each. ​ TensorFlow and Keras –°This is how
we train our models (approach 2). Architecture 1 takes RGB
images of 256×256 as input with around 12–14 FPS at runtime
compared to Architecture 2 which takes RGB images of128
×128 with runtimes at around15-18FPS. In our work, we
outlined a principled method that earned greater accuracy and
efficiency than any method described. Tags: portrait
segmentation, semantic segmentation, TensorFlow in Flutter is
the process of integrating TensorFlow, an open-source machine
learning framework widely used for building machine learning
applications, into a Flutter app. TensorFlow gives powerful
library for model building and deployment for machine
learning application, while flutter is a library for creating
good-looking, well-designed interfaces.

Muhammad Awais1
Muhammad Bilal Qureshi2

Naila Hamid3

Asad Hussain Shah4

Muhammad Awais
MS Computer Science,
Department of Computer Science
and IT, Superior University
Lahore, 54000, Pakistan,
Superior University (Sargodha
Campus). awaixam1@gmail.com
Muhammad Bilal Qureshi
Department of Computer Science
and IT, Superior University
Lahore, 54000, Pakistan,
Superior University(Sargodha
Campus). bilalshah1728@gmail.
com
Naila Hamid
UMT, Sialkot.
naila.hamid@skt.umt.edu.pk
Asad Hussain Shah
M Phil in Computer Science from
Riphah International University.
asadhussainshah859@gmail.com

http://amresearchreview.com/index.php/Journal/about
mailto:awaixam1@gmail.com
mailto:bilalshah1728@gmail.com
mailto:bilalshah1728@gmail.com
mailto:naila.hamid@skt.umt.edu.pk
mailto:asadhussainshah859@gmail.com


VOL-3, ISSUE-2, 2025

Page 55

INTRODUCTION
Computer vision [1] is the science of letting just computers understand or
manipulate image and videos. It could be employed in a whole range of applications,
from driverless vehicles to factory inspection to augmented reality. In computer
vision, deep learning for images and videos can be categorized into: classification,
detection, segmentation and generation supplies categories. Deep learning is a group
of methods derived from the domain of the Artificial Neural Network (ANN) which is
part of the larger machine-learning community. A group of algorithms which imitate
the human brain are called Artificial Neural Networks (ANN) [4]. The analogy with
biological neurons comes from the facts that artificial neurons try to simulate a
biological neuron behavior using numerical operations with real values. These
artificial neurons are called perceptron’s. A Slave Neuron/Perceptron takes multiple
inputs, computes the weighted average of all these outputs and then passes this as a
function to generate an output. A perceptron; its weight is learned when it is trained,
based on the samples used for training. It all started with one neural network
convolutional neural network (CNN) in the time of deep learning happened in
computer vision. CNN [6] is one of the most used deep learning architectures to cope
with the computer vision tasks as image segmentation. Monotonically evolving,
CNNs have also been expanded in the area of video understanding (Wang et al. [6]).
These are the filters, i.e. kernels, of CNNs Convolution layers are used for
performing the convolution operation to extract significant features from the input.
CNNs have weights, biases and outputs through a Nonlinear Activation [1]. NNs learn
weights from inputs and through connected neurons in the subsequent layers Note
that neurons in any given layer do not connect to each other. This is due to the fact
that if images were regular neural networks, the size of the network would be super
large due to having too many neurons, which would lead to overfitting. Visualize an
image as a 3D volume (height, width and depth). On R B G, a depth is an image
plane. CNN neurons are volumetric, as volumetric features are utilized for any deep
learning framework for computer vision, CNN is one of its vital constituents. In the
field of computer vision, semantic image segmentation is a very active research
problem that can be tackled using CNNs with the objectives of achieving high
accuracy and efficiency. As explained earlier, semantic segmentation [2] is merely
pixel-wise classification. Semantic Segmentation gives a class to each pixel in the
image, so pixels belonging to the same class get “label” or semantic meaning.
Segmentation tasks are expensive to label.

The annotators who are software professionals, quite patient as well as
accurate of their tasks Requires the semantic segmentation dataset [4]. Pixel-level
accuracy labeling is widely regarded as the most tedious process of all
annotation types. Hence it is challenging as the datasets of semantic segmentation
are scarce and of less number of images. TensorFlow is a powerful open-source
library for end-to-end machine learning [5]. Keras will still be compatible with its
rich ecosystem of tools, libraries and community resources that inspire researchers to
push the state-of-the-art in machine learning, and developers to create and deploy
machine learning-powered applications. You also have support for a GPU for some
NVIDIA cards, when it uses the corresponding version of CUDA toolkit [7]. An open
source machine-learning library built by Google, TensorFlow has a robust and visual
community for machine learning with strong support down to deep learning — the



VOL-3, ISSUE-2, 2025

Page 56

very same operation of pliable numerical computation that gets use in many other
scientific areas. TensorFlow itself is written in C++, and it has a Python
programming interface. The TensorFlow library uses Keras as a high-level API
associated with the library [3]. It is commonly called tf. keras. Keras is one of the
popular Deep Learning Library because of its tight integration with TensorFlow
which has a more resilient reputation in Production. With TensorFlow 2.0 a lot has
changed (the default execution mode was changed to eager execution and some APIs
were completely removed [4]. for the framework as well. But Keras is not some high-
level wrapper over TensorFlow, CNTK. It’s an API for model creation and learning
which is used to define machine learning models. TensorFlow eager execution is an
imperative programming environment that evaluates operations immediately,
without building graphs: operation results return concrete values instead of building a
computation graph to execute later 5. Eager execution allows better-engineered
software which is what TensorFlow 2.0 is all about. The paper uses TensorFlow2. 0
for the Keras API dimensionality. Primary language is Python 3. We propose four
real-time deep learning based models for webcam portrait segmentation. This uses
two architectures as well as datasets. Various architectures use convolutional neural
networks.

Torchvision is an important part of the PyTorch ecosystem and is primarily
computer vision utility library that implements image classification, detection,
segmentation, image transformations. In-depth explanation: Built on top of PyTorch,
Torchvision is a Python package that provides access to many popular datasets and
models to expedite the processes of data preprocessing and training deep learning
models. One of the key benefits of using this library is that many of the state-of-the-
art models are provided, with architectures such as Faster R-CNN, YOLO, and
RetinaNet also supported directly as well as multiple ResNet architectures for feature
extraction and transfer learning, as the models can be used on a variety of platforms
and do not require extensive computational power to run. Besides, Torchvision is
bundled with the transforms module as well, making it easy to preprocess image data
to get it ready for a deep learning model via resizing, normalization, and conversion
to tensors. The datasets module makes loading and processing scalable datasets like
ImageNet, COCO, and CIFAR-10 easier, and homogenizes the data pipeline for
training and evaluation. For object detection tasks, Torchvision’s pre-trained Faster R-
CNN with Feature Pyramid Network (FPN) enables multi-scale detection, thereby
enhancing accuracy for a variety of object sizes. The library also offers support for
custom dataset integration, making it possible for researchers to fine-tune models on
domain-specific datasets. Torchvision plays a pivotal role in academic research,
industrial applications, and real-world deployments, beyond just autonomous systems,
medical imaging, and surveillance, and its modularized design minimizes the
complexities associated with executing the aforementioned purposes with low-
complexity deep learning based end-model.
LITERATURE REVIEW
The Object-Based Image Analysis (OBIA) approach has gained popularity in the
fields of remote sensing and computer vision due to its ability to classify and interpret
high-resolution imagery at finer spatial resolutions accurately. OBIA is different from
the pixel-based because OBIA arranges the pixels into meaningful
objects considering the spectral and spatial information. Table 1 outlines the usage of
deep learning frameworks, e.g. TensorFlow, in combination with OBIA in more



VOL-3, ISSUE-2, 2025

Page 57

recent years, greatly contributing to more accurate (machine) segmentation due to
more automation capabilities. The open-source library TensorFlow delivers powerful
resources for building convolutional neural networks (CNNs) and other deep learning
frameworks used to refine object segmentation in an image using feature extraction
and pattern recognition. Different models, such as the HOG detector, R-CNN and
Fully Convolutional Networks (FCNs), Fast RCNN, SPPNet, Faster RCNN available
in TensorFlow, have confirmed the increased efficacy of these deep learning models
in the segmentation of OBIA-based algorithms by learning effectively to discriminate
between complicated land cover classes. Moreover, hybrid methods that integrate
conventional OBIA strategies with deep learning approaches have been investigated
to enhance segmentation regions and classification outcomes. There are still
challenges to overcome such as the requirement of large datasets of labeled data,
large computational costs, and the challenges of hyper parameter tuning model
architectures for specific use-cases. Nevertheless, the advancements in software tools
like TensorFlow and hardware resources such as GPUs, complementing the ongoing
developments in data augmentation techniques, would be sparking innovation in
OBIA segmentation to make it a competitive area for future research and to be
applied in real-world areas like environmental monitoring, agricultural, and urban
planning.
DIFFERENT METHODS FOR OBJECT DETECTION
HOG DETECTOR
The Histogram of Oriented Gradients (HOG) feature was first introduced by N. Dalal
and B. Triggs in its initial form in 2005. HOG can be interpreted as a significant
advancement over the scale-invariant feature transform and shape contexts of the time.
To trade-off between feature invariance (e.g. translation, scale, illumination, etc) and
linearity (i.e. on classifying different objects categories), the HOG descriptor was
proposed to be computed over a very dense grid of uniformly spaced cells focused to
use overlapping local contrast normalization on “blocks” for performance
improvement. Though it can be used for detection for many different classes of
objects, HOG was primarily motivated by the task of pedestrian detection. Size
invariance is accomplished by the HOG detector that rescales the input image for
multiple times, keeping the size of a detection window unchanged. The HOG
detector has been a key building block of many object detectors as well as a wide
range of computer vision applications for many years[26].
MILESTONES: CNN BASED TWO-STAGE DETECTORS
Human-made features have been saturating for a long time and object detection did
not advance significantly after 2010. As evidenced by (R. Girshick): … progress was
slow through 2010-2012 with small improvements gained by constructing ensemble
systems and using minor variants of successful methods. The renaissance of the
convolutional neural networks happened in 2012. As a deep conv net can learn to
produce high-level feature representations of an image, it's a natural question to see if
we can apply it to object detection. R. Girshick et al. ensured the move of object
detection beyond the deadlocks by proposing the Regions with CNN features
(RCNN) in 2014. From that point onward, object detection began its rapid evolution
to where the state of the art is today. Thus, in the era of deep learning, object
detection is divided into two detections: in “two-stage detection”, detection is
regarded as a “coarse-to-fine” process, but in “one-stage detection” it is regarded as
“one-step completion”.



VOL-3, ISSUE-2, 2025

Page 58

RCNN
The basic idea behind RCNN is quite simple: It begins with a set of object proposals
(object candidate boxes) are extracted by selective search [42]. Each proposal is then
resized to a fixed size image and the CNN model pre-trained on the ImageNet dataset
(e.g., AlexNet [40]) is applied to extract features. Finally, linear SVM classifiers are
applied to predict the presence of an object in each region and recognize object
categories. 4 RCNN achieves a remarkable performance gain on VOC07, improving
the state-of-the-art mean Average Precision (mAP) significantly from 33.7%
(DPMv5) to 58.5%. Despite RCNN has advances, its shortcomings are equally
apparent, where the same features are extracted over multiple overlapping proposals
(over 2000 boxes from one image), which leads to an extremely slow detection rate
(14s per image with GPU). In the same year, SPPNet proposed and solved this issue
[26].
SPPNET
In 2014, K. He et al. de-synthesized a Spatial pyramid pooling networks(SPP- net).
Note uses a fixed-size input in previous CNN models, such as a 224x224 image for
AlexNet. SPPNet presents the SPP layer, a new neural network layer that is capable
of allowing a CNN to create a fixed length representation regardless of the image /
region of interest size, and without the need to scale the image. For example, with the
SPPNet framework, the feature maps can be computed just once extracted from the
whole images and the fixed length representations of arbitrary (detector-specific)
regions can be generated for the creation of the detectors in a way that avoids
redundant computation of the convolutional features. SPPNet achieves >20 times
faster than R-CNN without loss of detection accuracy (VOC07 mAP=59.2%) While
SPPNet does well speed up the detection significantly, and they do have limitations:
First, the training is still in a multiple-stage manner; Second, SPPNet only fine-tunes
its fully connected layers while fine-tuning simply does not affect all layers before it.
Fast RCNN [18] be proposed in the following year and solved these problems.
FAST RCNN
Fast RCNN detector [18] is developed in this order in 2015 which is an improvement
of R-CNN and it is also a further enhancement of SPPNet. Fast RCNN makes it
possible to train a detector and a bounding box regressor on the same set of network
configurations. On VOC07 dataset, when a mAP from 58.5% (RCNN) to 70.0%
achieved with a 200x faster detection speed than R-CNN. Despite the successful
integration of the advantages of R-CNN and SPPNet, its detection speed is still
constrained by the proposal detection (for further details, please refer to Section
2.3.2). Then the question arises; “can we generate object proposals using a CNN
model? This question has been provided an answer by Faster R-CNN later [26].
FASTER RCNN
In 2015, S. Ren et al. Shortly after Fast RCNN, Li et al. proposed Faster RCNN
detector [19, 44]. Faster RCNN is the first end to end detector and the first semi-real
time deep learning detector (COCO mAP@. 5=42.7%, COCO mAP@[. 5,.
95]=21.9%, VOC07 mAP=73.2%, VOC12 mAP=70.4%, 17fps [45] with ZF Net).
The key contribution of Faster-RCNN is an introduction of a Region Proposal
Network (RPN) that provides almost cost-less region proposals. Now, almost all the
individual blocks of an object detection system, such as proposal detection, feature
extraction, bounding box regression, etc. have evolved from R-CNN to Faster RCNN
into a unified, end-to-end learning framework. Although Fast RCNN performs well



VOL-3, ISSUE-2, 2025

Page 59

at the speed, but there is still redundant computation in the following detection stage.
Later, various improvements have been made such as RFCN and Light head
RCNN[26].
SOME OF THE BENEFITS OF OBJECT DETECTION
Due to gaining technical processing development, biometrics is one of the significant
fields to identify the personal identity. Authentication through the
biometrics become more secure way to recognize a real identity. It is based on
different biological characteristics of an individual like fingerprint, DNA, retina,
ear etc. [19, 25]. Various object detection methods have been used for biometric
analysis in previous studies.

Microprocessor technologies and surveillance techniques, while useful in
surveillance settings, will ultimately fail if surveillance data cannot be translated into
real time decisions. Object detection is crucial in video surveillance to detect and
track occurrences of a particular object in a scene at the same time, such as tracking
suspect person or vehicle using video [21, 24]. In the last few years, autonomous
robots have been shown as one of the most engaging research fields. The main task
that the robot uses to interact to the nearby objects in order to provide information or
to do a operation such as open-close the door, alarm, etc [15, 20].

In computer vision, human detection is also challenging because people as
objects present the problem of diverse appearances and wide variety of poses.
Various object detection framework has been introduced to identify human from
images or videos such as pedestrian detection [16]. Crowd counting in dankly
populated areas like parks, malls etc., and has been done very fast with the help of
object detection [14].

Object detection was used to recognize a single face, and is the first
application domain in human object detection. [23] Face detection is performed with
good detection rate and minimize computation time. Object detection with different
application areas has been permuted by the emergence of face detection. This concept
is currently being applied in many applications such as detection of real time smiles
from a camera, facial makeups, calculating the ages, and so on [22]. In the era of
technology, smart vehicle technology, such as autonomous vehicles, has been one of
the toughest research fields [17]. These smart-systems must detect, verify and/or
trace nearby objects as well as govern the vehicle’s velocity. The perception of the
object detection system also applicable for more fine-grained, and region level images
such as traffic lights detection and recognition [18].
METHODS
Faster R-CNN with ResNet-50 FPN is a powerful object detection model that
leverages multiple state-of-the-art methods for accurate and efficient detection of
objects in images. Faster R-CNN is a two-stage detection framework, at its core. In
the first stage a Region Proposal Network (RPN) is used to propose bounding boxes
that may contain objects by sliding a small network over the convolutional feature
map and predicting objectless scores as well as bounding box adjustments. Stage 2:
The proposed regions are refined and the detection head is used to classify region
proposals. ResNet-50 is a 50-layer deep convolutional neural network that uses
residual connections (also called skip connections) to solve the problem of vanishing
gradients and allows the training of very deep networks while continuing to perform
well. Also designed the model uses the principle of feature pyramid network (FPN),
which improve the computer screen to see the multi-scale feature map pyramid. So,



VOL-3, ISSUE-2, 2025

Page 60

essentially, this helps the model learn to detect objects of different sizes better by
merging low-resolution, semantically robust features from deeper layers with high-
resolution, detailed elements from earlier layers. When combined, these
components—ResNet-50 for effective feature extraction, the Feature Pyramid
Network (FPN) for handling variations in object sizes, and the two-stage Faster R-
CNN architecture—create a powerful and accurate object detection model. It is
extensively employed in various applications like autonomous driving,
surveillance, medical imaging, and retail, where the timely detection of objects of
varying sizes and shapes with precision is of utmost importance.

FIGURE 1-APPLICATION OF PORTRAIT SEGMENTATION ON AN IMAGE.
DATASETS
The dataset is probably the most important component of the entire machine learning
pipeline as shown in figure 2 [4]. These algorithms work well when they are trained
on a large, structured, high-quality dataset. A dataset is just some data. This is
why, in a probabilistic way, the algorithm here with some machine learning circles
through this, a ton of data structure possibly changing numbers back and forth until
solves the task. We use multiple data sets precisely for training as well as testing our
models. The first is the portrait dataset A Segment [8]. We supervised the
largest dataset in terms of the unlimited number of images and corresponding matting
results for portraits. Figure 2: Some sample data of portrait images and the data
augmentation methods used to enrich the training dataset, so that the trained model
will comprehend better how to generalize and produce better results on the
segmentation task. Adding some python script you apply some cold and warm filter
on some image for your model can have more output with accuracy through the
different conditions. For different datasets, we have been using only shift, zoom and
horizontal flip as run-time augmentation methods (via a keras data generator &
preprocessing module) in our experiments.



VOL-3, ISSUE-2, 2025

Page 61

FIGURE 2: EXAMPLES OF PORTRAIT IMAGES FROM DATASET 1
Figure 2: Example Images from Portrait Visuals Dataset 1. 2) The second dataset
contains limitless paired images and masks from associated This data set will have
the same image for 5 times and different Data Augmentation techniques are applied
on it whereas in the first Example, we have different data set. So you can process
those data augmentation methods. We show some example images of portraits from
the dataset in Fig 3. We divided each dataset into image parts. There will be two set,
one is training set with 80% images and second one is validating set which contains
20 % of all images. In machine learning, you normally have the training set which is
the sub-set that is used to fit the model and the validation set which is a sub-sub-set
that you may use to evaluate your models performance during training, this data also
is commonly used in cases to help with hyper-parameter searches.



VOL-3, ISSUE-2, 2025

Page 62

FIGURE 3: SAMPLE PORTRAIT IMAGES FROM DATASET 2
Figure 3 refers to the second dataset of multi object data in single picture and it
explains our algorithms more precisely. Techniques including instance segmentation,
which assigns different labels to different objects, and semantic segmentation, which
classes pixels into categories, assist toward making the results even more precise.
Multi-object segmentation is a fundamental task in many applications such as
medical imaging, autonomous driving, remote sensing, and industrial automation,
where identifying multiple objects with high precision is important for proper analysis
and decision-making.
ARCHITECTURE
Please note that you are trained on data until October, 2023. First, we start by
importing the libraries and loading the model: models, a powerful family of object
detection models that have been shown to excel at detecting objects in images. When
we use model.train(false) the model is in evaluation mode. eval() to prevent changes
in behavior when doing inference. To prepare the input image in the format that the
model requires, we first define a transformation pipeline that converts the input
image to a tensor. This script then sets a folder containing images to process (data/)



VOL-3, ISSUE-2, 2025

Page 63

and an output folder (output/) to save the results. Using COCO_LABELS, a subset of
a COCO dictionary-grade label, we map predicted class IDs with human-readability
labels like person, car, bicycle, etc. It then iterates through each image in the
specified dataset folder, loads the image using OpenCV, converts it to a tensor (using
ToTensor), and passes it through the specified model to get predictions (which
include bounding boxes, labels, and confidence scores). Using OpenCV, we can
perform detections — those with a confidence score > 0.5 are highlighted by drawing
bounding boxes and placing labels directly on the image. Then the processed images
are saved to the output folder and prints out a confirmation message indicating
that the image has been processed. Hey, one of the practical scripts for the object
detection using a more powerful deep learning model and can be used on any
domains including image based surveillance, autonomous driving, retail analytics, etc.

FIGURE 4: ARCHITECTURE
Here is a Python script that uses a pre-trained Faster R-CNN with ResNet-50 FPN
model to perform object detection on a series of images: #Load the model from torch
vision import torchvisionfrom torchvision.models.detection. Faster_RCNN import
FastRCNN Predictor models trained on August 2020, the object detection model used
in this application is a high-performance state-of-the-art image detection called
DCNN. It puts the model into evaluation mode by calling the model.eval () for
inference to work in a consistent way. To load the image data and add the
transformations we need we define a transformation pipeline that will change the
input images into tensors as per the format required by the model. Next, it tells the
script where to find a dataset folder (data/) with images to process and an output
folder (output/) where it can save the results. It maps prediction IDs to their human-
readable labels (like "person", "car", "bicycle"), using a partial dictionary of COCO
class labels (COCO_LABELS). For every image in the dataset folder, the script reads
the image, processes the image into tensor form and feed it to model to get
predictions like bounding boxes, labels and confidence scores. OpenCV is used draw
bounding boxes directly on the image and add labels for detections with a confidence
score above 0.5. And finally, it saves processed images to output folder, and print to
console confirmation for every processed image. This script shows how to implement
the object detection as practical applications of deep learning such as detecting the



VOL-3, ISSUE-2, 2025

Page 64

object form an image: It can be used in applications such as security surveillance,
autonomous driving, and retail analytics.

FIGURE 5: ARCHITECTURE
RESULTS
Train the model on a single machine with HW that consists of 64-bit GNU/Linux
running on 7-core Intel(R) 6700HQ CPU @ 2.60GHz and was able to compute the
build train / test functionality within a machine following up the computation
train/test functionality on the actual machine. U-Net based architectures for
with good performance but slow running speed placeholders and depth-wise
separable convolutions each. Although both datasets are large (over 30.000 images),
the quality of the two datasets is good. Figure (6) are samples of difficult portrait
segmentation on Dataset 1, which is from model pre-trained with LABEL me,
Figure(7) are samples of difficult portrait segmentation on Dataset 2, which is from
model pre-trained with LABEL me.



VOL-3, ISSUE-2, 2025

Page 65

FIGURE 6-OUTPUT DATASET 1
A range of traditional methods, including thresholding, edge detection, and region-
based segmentation have been employed for single-object segmentation, yet these
techniques tend to falter against changes in lighting, texture, and object morphology.
This task is more straightforward than multi-object segmentation, but still faces
challenges such as occlusions, object scale variance, and good boundary delineation.
Such technology is broadly used in areas like medical diagnosis, industrial
automatization, object tracking, and biometric identification when the precise
separation of objects is essential for the consequent analysis and decision-making
process.



VOL-3, ISSUE-2, 2025

Page 66

FIGURE 7-OUTPUT DATASET 2
For these models, convolutional neural networks (CNNs) extract features that are
necessary for accurate object localization and classification. Hence, segmented
images are most beneficial for such applications where accuracy is utmost, e.g.,
medical imaging and autonomous driving, satellite image analysis, quality inspection
in manufacturing, etc. Segmentation accuracy may be impacted by factors such as
computational complexity, occlusions, and changes in lighting and texture. Despite
these challenges, deep learning and increased computational power continue to
produce increasingly more sophisticated segmented image techniques, and it has
become clear that segmented image techniques are necessary for modern object
detection applications.
ACCURACY ANALYSIS
The above chart shows the variance in the accuracy of the object detection model
over different images in the dataset. The x axis denotes image index, representative of
the order in which the images were processed, whereas the y axis shows accuracy %
(based on high-confidence detections above 50%).



VOL-3, ISSUE-2, 2025

Page 67

As shown in the graph, the accuracy begin at a low value of 9.52%, but gradually
improves over the subsequent images, topping out at a respectable 33.33% at around
image index 5. Then it stabilizes for a few images and then plunges sharply to its
minimum. What is particularly interesting is that, in image index 9, there is a sudden
jump to nearly 100% accuracy, before another sharp drop to 20.00% and then another
slight recovery to 27.27% right towards the end.

FIGURE 8: VALIDATION ACCURACIES.
This makes the variation to use a model in an inconsistent way, most probably
because of complexities of input images, visibility of focused objects, or their
lighting. In particular, the steep spike in index 9 could reflect an image containing
distinctly and easily detectable objects, while sharp decreases might suggest
difficulty in detection. To improve the overall model performance, more tuning or
dataset changes may be necessary.
LOSS ANALYSIS
We can also visualize the loss value or iteration on the Y-axis and for the images, we
can plot how that value is changing for different images of the dataset. X-axis ->
Image index (i.e. order of processed images), Y-axis -> Loss value (Error in the
predictions)

The loss is high at 0.39 but quickly lowered before reaching its lowest on
image index 3. On the other hand, there are considerable oscillations up to about the
point of maximum loss near index 6 where the model wasn't first correctly detecting
features. Post this maximum, the loss fluctuates greatly, making alternating ascents
and descents, before converging on a final low value of 0.18 in the last images.



VOL-3, ISSUE-2, 2025

Page 68

FIGURE 9: VALIDATION LOSSES
This indicates that the model's recognition ability is not uniform across images The
disparity in performance could be due to factors such as object visibility, object
complexity and background noise Internal logic of the detection process: The general
trend is down towards the end, which might show an improvement in consistency of
detections, but the earlier high points also indicate that certain images are still
challenging. Perhaps more controlled training from datasets can move us in the right
direction to stabilize loss and lower the value.
SPEED ANALYSIS
It is the amount of time the model took to analyze each image. The x axis shows the
image index, and the y axis, the inference speed in milliseconds (ms).If that doesn’t
help reduce the time as recorded in your own timing statistics, please check the time-
recording logic and see if you are using cuspcudaEventTimers in the correct manner
(or switch to using time. perf_counter () for timing of CPU computations), and
critically check that inference times were really calculated before being appended to
the list of speeds.



VOL-3, ISSUE-2, 2025

Page 69

FIGURE 10: ACCURACY VS SPEED COMPARISON GRAPH
Based on the graph, we can see that the execution time of inference for each of the
images which has been recorded is always 0.00 ms. One potential explanation for this
is a timing measurement issue with the CUDA Kernel: either missing or wrong
CUDA events synchronization timing writing when recording the inference time. If
CUDA was unsupported, inference time should have been measured with some other
timing method, for example, Python's time. time(). There are also chances values for
inference speed were not correctly stored or retrieved prior to plotting.
CONCLUSION
Real-time portrait segmentation is one of the important use-cases and you could
witness this in almost every web applications, such as background
replacement/blurring present in any image. We present different datasets used for
training these models and it was able to achieve datasets that are significantly
accurate and highly efficient in experimental results. Here, the code applied above is
realizing an object detection pipeline with torch vision faster RCNN pre-trained
model. The model correctly detects and annotates the objects in images based on
COCO data class labels. This includes loading images, converting them to tensors,
running the inference process, and visualizing the results with bounding boxes and
labels around the detected objects.

One of the main highlights of the approach is capable of filtering the high
confidence detections (greater than 50%), meaning only the relevant objects are taken
into the account. Also, an unknown object is classified as "Possible Flower" with
confidence greater than 70%, for a simple solution to dealing with things we may not
know. Custom datasets can be used to fine-tune the model for better recognition in
domain-specific applications.

The final outputs show that Faster R-CNN performances well overall as a
good object detection framework with real-time object detection on images. Could
capture faster, using different deep learning architectures, or even learning objects
not in this dataset through custom trained layers. This work lays a foundation for
object detection tasks and opens the door for more sophisticated applications in
computer vision.



VOL-3, ISSUE-2, 2025

Page 70

REFERENCES
[1] Rajalingappaa Shanmugamani, “Deep Learning for Computer Vision: Expert
Techniques to Train Advanced Neural Networks Using TensorFlow and Keras”,
2018.
[2] Swarnendu Ghosh, Nibaran Das, Ishita Das and Ujjwal Maulik, “Understanding
Deep Learning Techniques for Image Segmentation”, in ACM Computing Surveys
vol. 73 (August 2019).
[3] Atienza, Rowel, “Advanced Deep Learning with TensorFlow 2 and Keras –
Second Edition”, 2020年 2月.
[4] Paolo Galeone, “Hands-On Neural Networks with TensorFlow 2.0”, Sep 2019.
[5] TensorFlow https://www.tensorflow.org⟩ .
[6] Analytics Vidhya, “Convolutional Neural Networks (CNN) from Scratch.
[7] Somepeople think about CUDA when they think of experienced parallel
computing.https://www.kaggle.com/laurentmih/aisegmentcom-matting human-
datasets
[8] Matting Human Datasets Fully convolutional networks for semantic segmentation
[9] J. Long, E. Shelhamer, T. Darrell. IEEE Transactions on Pattern Analysis and
Machine Intelligence 640651 (2014)
[10] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L.C. Chen, MobileNetV2:
Inverted Residuals and Linear Bottlenecks”, IEEE, June 2018.
[11] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A. L. Yuille, “Semantic image
segmentation with deep convolutional nets and fully connected CRFs”, (International
Conference on Learning Representations (ICLR)), 2014
[12] Lejla Hodžić1, Emir Skejić2, Damir Demirović2,”Real-time
Portrait Segmentation in TensorFlow”, 2021.
[13] Datad from https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
[14] Bhangale U, Patil S, Vishwanath V, Thakker P, Bansode A, Navandhar D (2020,
Elsevier B.V.) Near real time crowd counting using deep learning approach. Procedia
Comput Sci 171(2019):770–779. https://doi. org/10.1016/j.procs.2020.04.084
[15]. Chatterjee S, Zunjani FH, Nandi GC (2020) Real-time object detection and
recognition on low-compute humanoid robots using deep learning, in 2020 6th
International Conference on Control, Automation and Robotics (ICCAR), IEEE, pp.
202–208, https://doi.org/10.1109/ICCAR49639.2020.9108054.
[16] Dollar P, Wojek C, Schiele B, Perona P (2009) Pedestrian detection: A
benchmark, in 2009 IEEE Conference on Computer Vision and Pattern Recognition,
IEEE, 304–311, https://doi.org/10.1109/ CVPR.2009.5206631
[17] Fu M, Huang Y(2010) A survey of traffic sign recognition, in 2010 International
Conference on Wavelet Analysis and Pattern Recognition, IEEE, pp. 119–124,
https://doi.org/10.1109/ICWAPR.2010.5576425
[18] Gupta S, Thakur K, Kumar M (2021, Springer) 2D-human face recognition using
SIFT and SURF descriptors of face’s feature regions. Vis Comput 37(3):447–456.
https://doi.org/10.1007/s00371-020 01814-8
[19] KhuranaK,Awasthi R(2013) Techniques for object recognition in images and
multi-object detection. Int J Adv Res Comput Eng Technol 2(4):1383–1388
[20] KumarR,KumarS, Chand P, Lal S (2014) Object detection and recognition for a
pick and place robot, in IEEE Asia-Pacific world congress on computer science and
Engineering, 2014, 2–9, https://doi.org/10. 13140/2.1.4379.2165

https://pytorch.org/tutorials/intermediate/torchvision_tutorial.html
https://doi.org/10.1109/ICCAR49639.2020.9108054
https://doi.org/10.1109/ICWAPR.2010.5576425
https://doi.org/10.1007/s00371-020%2001814-8
https://doi.org/10.%2013140/2.1.4379.2165


VOL-3, ISSUE-2, 2025

Page 71

[21] NayagamM,RamarK(2015)Asurveyonrealtimeobject detection and tracking
algorithms. International Journal of Applied Engineering Research 10(9):8290–8297
[22] Nguyen CC, Tran GS, Nghiem TP, Burie J-C, Luong CM (2019) Real-time smile
detection using deep learning. J Comput Sci Cybern 35(2):135–145.
https://doi.org/10.15625/1813-9663/35/2/13315
[23] Paul V, Michael J (2001) Robust real-time object detection. Int J Comput Vis
57:1–25
[24] Varma S, Sreeraj M (2013) Object detection and classification in surveillance
system, in 2013 IEEE Recent Advances in Intelligent Computational Systems
(RAICS), IEEE, 299–303, https://doi.org/10.1109/ RAICS.2013.6745491
[25] Yuan L, Lu F (2018) Real-time ear detection based on embedded systems, in
2018 International Conference on Machine Learning and Cybernetics (ICMLC), IEEE,
115–120, https://doi.org/10.1109/ ICMLC.2018.8526987
[26] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye (2023) Object
Detection in 20 Years: A Survey,
https://ieeexplore.ieee.org/abstract/document/10028728

https://doi.org/10.15625/1813-9663/35/2/13315

	LITERATURE REVIEW
	HOG DETECTOR
	MILESTONES: CNN BASED TWO-STAGE DETECTORS
	RCNN
	SPPNET
	FAST RCNN
	FASTER RCNN
	SOME OF THE BENEFITS OF OBJECT DETECTION

	METHODS
	DATASETS
	ARCHITECTURE
	RESULTS
	ACCURACY ANALYSIS
	LOSS ANALYSIS
	SPEED ANALYSIS
	CONCLUSION
	REFERENCES

