
379

Annual Methodological Archive Research Review
http://amresearchreview.com/index.php/Journal/about

Volume3, Issue5(2025)

1*Khalid Hamid, 2Muhammad Danish, 3Ayyan Asif, 4Younus Khan, 5Muhammad Danish, 6Muhammad Waseem Iqbal, 7Umair
Ali. 8Muhammad Ibrar

Empowering Robust Security Measures in Node.js-Based REST APIs by JWT Tokens and Password Hashing:
Safeguarding Cyber World

Article Details ABSTRACT

Khalid Hamid*
Department of Computer Science and
Information Technology, Superior University
Lahore, Lahore, 54000, Pakistan. Corresponding
Author Email: khalid6140@gmail.com
Muhammad Danish
Department of Computer Science, University of
New Mexico, NM; mdanish@unm.edu
Ayyan Asif
Master of Science in Data Analytics (Stem)
Department of Computer Science New Mexico
State University, Las Cruces, NM;
ayyanasif07@gmail.com
Younus Khan
Department of Computer and Mathematical
Sciences New Mexico Highlands University, Las
Vegas, NM; Ynyuskhan464@gmail.com
Muhammad Danish
Department of Computer Science and
Information Technology, Superior University
Lahore, Lahore, 54000, Pakistan; bcsm-f21-
269@superior.edu.pk
Muhammad Waseem Iqbal
Department of Software Engineering, Superior
University Lahore, 54000, Pakistan;
waseem.iqbal@superior.edu.pk
Umair Ali
Department of Computer Science and
Information Technology, Superior University
Lahore, 54000, Pakistan; bcsm-f21-
259@superior.edu.pk
Muhammad Ibrar
Department of Computer and Mathematical
Sciences New Mexico Highlands University, Las
Vegas, NM; Mibrar@live.nmhu.edu

This research analyzes the practical implementation of the security measures on
the node. js-based REST APIs. This research paper studies authorization and
authentication with the use of role-based access control, JWT tokens and password
hashing. It also addresses the common vulnerabilities to the APIs like SQL
Injection, Cross-site scripting attacks with the help of the parameterized queries
and some of the input validations. The testing was conducted by the postman
which demonstrates the good results that reduce the vulnerabilities of the SQL
injection attacks and cross-site scripting attacks. This research paper also looks at
the trade-offs between performance and security. The findings result in the best
security measure to make REST APIs secure.

http://amresearchreview.com/index.php/Journal/about

Online ISSN Print ISSN

3007-3197 3007-3189

mailto:khalid6140@gmail.com
mailto:mdanish@unm.edu
mailto:ayyanasif07@gmail.com
mailto:Ynyuskhan464@gmail.com
mailto:bcsm-f21-269@superior.edu.pk
mailto:bcsm-f21-269@superior.edu.pk
mailto:waseem.iqbal@superior.edu.pk
mailto:bcsm-f21-259@superior.edu.pk
mailto:bcsm-f21-259@superior.edu.pk
mailto:Mibrar@live.nmhu.edu
http://amresearchreview.com/index.php/Journal/about


380

INTRODUCTION

APIs are vulnerable to SQL injection attacks, stealing the JWT tokens and manipulating them,

and cross-site scripting attacks. Having the security framework available and some best

practices, implementing the secure APIs remains a challenge, especially in dynamic runtime

environments like Node.js. This paper gives a practical approach to secure REST APIs made in

node.js [1][2]. It practically implements the JWT, Helmets, authorization and authentication

in such a way that they provides a way to implement them securely and safely [3][4]. The API

was tested using the postman which clears almost every mentioned threat. Many studies are

presented out there but this research provides a bridge between the theory and the practical

implementation [5][6]. It also presents a trade-off between security and performance [3][7].

The goal of this research is to analyze the effective measures in practical that need to be taken

to make sure that API is safe and secure [][8].

LITERATURE REVIEW

This paper by Sattam J Alharbi summarizes the findings and provides suggestions to make the

rest of the APIs more secure by analyzing the previous research papers. This paper researches

the common vulnerabilities of the rest of the APIs by looking at the previous research papers

and identifies how to mitigate them. It explains all parts of the APIs that need to be made

secure in aspects of the testing and authorization. It provides concise details on making the

APIs more secure [9].

This paper by Arvinda A Kumar explains the key security measures and looks at how

token-based authentication can be made secure and looks at pass lib, a password or text hashing

library[2]. This paper researches the implementation of effective security measures by looking

at how JWT authentication can be done securely, how Cors policy should be set, and how

HTTP error handling can be done. It looks at the previous research studies and provides a

structured way to implement security on the different and vulnerable aspects of the rest APIs.

[10]. This paper by Ankit Hansraj Yadav, Neeraj Jokhoo Yadav, and Om Bhupendra Singh

simply highlights the importance of knowledge for the cyber-security and software engineering

students about API security [1]. The paper researches the common vulnerabilities and

potential risks and pressurizes the importance of knowing the security of the rest APIs. It looks

at the API background, common API security threats and challenges to APIs security, and

solutions to these challenges to security. It efficiently gives a map that why API security is the

most important [11].

This paper by Cao Rongqiang, and Yangang Wang implements the techniques for



381

authorization and authentication in website development. It analyzes the microservices

architecture of simple authentication and authorization. It implements the authorization and

the authentication for the rest APIs in the SCE. It looks at the previous works to find a better

and more efficient way to implement authorization and authentication in website development

[12]. This paper by Rajesh Kotha provides instructions and best practices for API inquiries

introduced in the REST standard for the software architecture [26]. It tells about the HAMC

technique which allows the authentication process and maintains the secrecy, and integrity of

the software. It provides pretty concise details about the HAMC technique used to implement

successful authorization and authentication and how it can be used to maintain the security of

the software in which they are used [13].

This paper by Silvia Llorente Viejo analyzes the security recommendations by different

organizations for rest APIs and creates an app that explains all security measures for the rest

API server. This paper researches the best encryption algorithms and password-hashing

functions. It applies additional measures like CSRF tokens just by analyzing the

recommendations of different organizations. It provides a detailed approach to secure rest API.

This paper provides very good security measures for rest APIs [14].

This paper by Priyanka Gowda and Narayna Gowda analyzes the scalability and

security best practices in the rest of API design. This paper approves or states the efficient

practices in making the of rest the APIs to make it secure and scalable by using several

publication analyses, standards and better practices. This paper gives a structure to design a

rest API in such a way that it comes out secure and scalable. This paper serves as a map to

make a secure API [15]. This paper by Dinh Toan Nguyen analyzes the latest security

measures provided by different API services and also analyzes the Twitter and stripe services

for security importance and analyzes the author's website and C# library for API call

security[24]. This paper identifies the main problem of Stripe which is encrypting the private

key before sending it to the server and also Stripe must change the code quality of JavaScript to

secure the public key. It provides a theoretical and practical explanation of web security and

API service [25] [16].

This paper by A Sanjana, M. Anusha expounds on the methods that an attacker can use

to expose the flaws in the rest APIs. This paper gives some foundational security rules on how

to implement the security in the rest APIs. This paper also looks at how cloud resources can be

used by using the API requests. This paper provides a handful of information on how rest APIs



382

can test and detect security violations using active property checkers [17]. This paper by

Pawan Kumar Bhat focuses on making a model or prototype of making an API using the C#,

managing the authentication and authorization in such a way that users can insert, update, and

delete the data in the API. This paper uses the O. Auth 2.0 for implementing the authorization

and authentication. The database is made using a Microsoft SQL server. It puts the demand

based on how the web APIs can be made perfectly without any kind of security breach and flaw

[18].

METHODOLOGY

The methods of making rest API secure contain multiple layers of security. It consists of

validating input, encrypting the sensitive data authentication and authorization processes [19].

Everything mentioned above is explained below.

API ARCHITECTURE

The goal of this stage is to identify the blueprint of the API means learning about the API

endpoints and identifying which endpoints need secure access for the user so they handle more

secure data [20].

IDENTIFY

So, I am going to be making an API for an e-commerce site this API will contain product

information, user information, reviews on the products, cart information checkout information.

So, the app will contain the endpoint written below [21].

 For Products(/api/v1/products)

 For Users(/api/v1/users)

 For Reviews(/api/v1/reviews)

 For Cart(/api/v1/carts)

 For Checkout(/api/v1/checkouts)

Now it is noticeable that some of these endpoints handle sensitive data therefore these

endpoints require strict security access. Let’s identify which of the endpoints require the

stricter security rules by giving the public and private keywords and by public means it

requires any kind of security measures among the above-mentioned security measures [22].

 For Products(/api/v1/products): Some of the endpoints in this endpoint will be private

like deleting the product, adding the products. All others will be public like getting the

products.



383

 For Users(/api/v1/users): All of its endpoints will be private because the data of the users

will be private.

 For Reviews(/api/v1/reviews): All of these review endpoints will be public except adding

the review and deleting the review.

 For Cart(/api/v1/carts): All of these cart endpoints will be private. It will contain some

kind of security.

 For Checkouts(/api/v1/checkouts): All of these cart endpoints will be private. It will

contain some kind of security.

AUTHENTICATION AND AUTHORIZATION PLANS

First of all, let’s talk about authentications: authentication means to verify the user that he is

the one who he claims to be. So, the rest APIs are stateless and Jason Web Token is also

stateless so it will be efficient to use the JWT token for the authorization. This authorization

will be performed on the /user/login endpoint. When a user signs up or login it is given JWT

in response that contains some information about the user that helps in knowing that the user

has logged in. Now this JWT token will be sent by the user in every request in the

authorization header.



384

FIGURE 1: AUTHENTICATION THROUGH JWT

Secondly let’s talk about authorization: authorization determines what processes or actions an

authenticated user can perform. There are many ways to perform the authorization that help in

performing the role-based access controls. Some people perform role-based access control by

storing them in the JWT and extracting them when the user makes any request the JWT token

is received and then from its payload the role (like admin, user, etc.) then one can make

middleware function to respond in term of the role. [14]



385

FIGURE 2: AUTHORIZATION

Then there is another method to implement the role-based access that the user enters its roles

when entering its information, then we make a role-based access middleware function that can

then be used to give the role-based access control like I have done in my e-commerce API and

written as follows.

exports.restrictTo = (...roles) => {

return (req, res, next) => {



386

console.log(roles);

if (roles.includes(req.user.role)) {

const error = new Error(

"You do not have the permission to perform this action"

);

console.log(error);

return next(error);

}

next();

};

};

These roles will be passed into the middleware while defining the routes:

authController.restrictTo("user")

If it is being wondered where this req.user comes from it comes from the middleware function

protect:

exports.protect = async (req, res, next) => {

let token = "";

try {

if (

req.headers.authorization &&

req.headers.authorization.startsWith("Bearer")

) {

token = req.headers.authorization.split(" ")[1];

} else if (req.cookies.jwt) {

token = req.cookies.jwt;

}

if (!token) {

throw new Error("You are not logged in!");

}

const decoded = jwt.verify(token, process.env.JWT_SECRET);

// console.log(decoded);

const user = await User.findById(decoded.id);



387

if (!user) {

throw new Error("The token belonging to the user not longer exist");

}

if (user.changedPasswordAfter(decoded.iat)) {

throw new Error("User recently changed the password");

}

req.user = user;

return next();

} catch (error) {

next(error);

}

};

SQL INJECTION ATTACKS PROTECTIONS

These are the kinds of attacks in which the attacker inputs some kind of query into the request

body and when that query is executed it produces some kind of unwanted results. One of the

ways that ca prevent is by sanitizing the data. Now these attacks can be prevented in many

ways but one of the ways is to use a third-party library that helps in doing this and it is

specially built for node.js [13].

const mongoSanitize = require('express-mongo-sanitize');

const xss = require('xss-clean');

// Data sanitization against NoSQL query injection

app.use(mongoSanitize());

// Data sanitization against XSS

app.use(xss())



388

FIGURE 3: SQL INJECTION PREVENTION

HEADERS PROTECTION

Usually, the attacker attacks the API using the headers: for this, a third-party module can be

used in the node. Js-based API is called Helmet. It also helps in securing the application from

cross-site scripting attacks and as well as helps to prevent attackers not knowing about the

known vulnerabilities. These help a person secure the node JS API by setting several HTTP

headers [12]. You can just implement it like below:

First, you have to import it in your main app.js file and before that install the helmet

library using the NPM.

const helmet = require('helmet');

// Set security HTTP headers

app.use(helmet());



389

RATE LIMITING

It is a technique to control the no of requests coming from the network or going from it. This

is important for better workflow and reduces the risks of attacks and the server never overloads

[11]. This can be done by installing the express-rate-limit third-party library.

const rateLimit = require('express-rate-limit');

One can use the rate limiter like this:

const limiter = rateLimit({

max: 100,

windowMs: 60 * 60 * 1000,

message: 'Too many requests from this IP, please try again in an hour!'

});

app.use('/api', limiter);

RESULT AND DISCUSSION

Hence, after applying all the security measures practically and theoretically the study

successfully made our API secure from different threats. Like our express-rate-limit blocked

almost all the unnecessary requests from the clients, the XSS third-party library also helped

prevent the SQL injection in our requests along with mongoSanitize which helped in sanitizing

the SQL injections also, then we learned about the use of the helmet library that we used as the

middleware in App.js file to make the API secures from the cross-site scripting attacks and also

set the HTTP header to prevent unknown vulnerabilities to expose to the attackers and we also

learned about the how we can implement the role-based access control in our node.js rest API.

All of this knowledge gave us the practical as well as the theoretical aspects of the security

measures and implementation in the rest of API made using the node.js

CONCLUSION

In summary, this research has presented a detailed overview of the numerous security solutions

that can be used to secure Node.js-based REST APIs. By employing authentication and

authorization practices like JWT tokens and role-based access control, the study has developed

a sound framework for safe access to sensitive resources. Using the JWT token for stateless

authentication and introducing role-based access control middleware, the study can define the

roles of the users and ensure proper access restrictions. In addition, the study discussed the

protection against common weaknesses like SQL Injection and Cross-Site Scripting (XSS)

attacks. With strategies like data sanitization through the use of express-mongo-sanitize and



390

XSS-clean and valid input checks, we made it possible to minimize the threats of such an attack.

Securing headers in place with the helmet library additionally strengthened the defenses as a

whole, making sure that our API is less exposed to typical web application security concerns.

The use of rate-limiting mechanisms was also an efficient mechanism for regulating the number

of requests, safeguarding against denial-of-service attacks, and promoting the stability and

performance of the API. The results from the testing and implementation of the security

measures reaffirm their success in protecting against vulnerabilities. The practical usage of

these methods, complemented by theoretical reasoning, goes into a complete security plan that

diminishes the attack risk substantially. The trade-offs between efficiency and security were

also taken into account, and the steps taken maintain a balanced approach, ensuring security as

well as efficiency. Therefore, this study emphasizes the need to integrate sound security

practices into the design of REST APIs to make them resistant to typical attacks while

ensuring optimal performance and user experience.

REFERENCES

1. Azhar, Z. (2024). Blockchain as a Catalyst for Green and Digital HR Transformation:

Strategies for Sustainable Workforce Management. Open Access Library Journal, 11(9),

1-22

2. Azhar, Z. (2024). The Role of Chatbots in Enhancing Job Seekers' and Employee

Experience: A Case Study on CV Warehouse. The Journal of Social Sciences Research,

10(4), 23-35.

3. Azhar, Z., Nawaz, H., Malik, A. S., & Zaidi, M. H. (2022). Strategic Impact of Cloud

Computing on HR Transformation. International Journal of Social Science &

Entrepreneurship, 2(2), 546–576. https://doi.org/10.58661/ijsse.v4i4.336

4. Azhar, Z., & Imran, M. (2024). Ethical Considerations in the Adoption of Artificial

Intelligence in Human Resource Management: A Comprehensive Review. Journal of

Emerging Technologies and Innovative Research (JETIR), 11(8).

5. Danish, M.; Shahid, S.; Ghafar, A.; Hamid, K.; Ali, N.; Ghani, A.; Ibrar, M.; Mandan, S.

Security of Next-Generation Networks: A Hybrid Approach Using ML-Algorithm and

Game Theory with SDWSN. 2025, 3, 18–36, doi:10.63075/wdpwrr31

6. Hamid, K.; Iqbal, M.W.; Aqeel, M.; Liu, X.; Arif, M. Analysis of Techniques for

Detection and Removal of Zero-Day Attacks (ZDA). In Proceedings of the Ubiquitous

Security; Wang, G., Choo, K.-K.R., Wu, J., Damiani, E., Eds.; Springer Nature:



391

Singapore, 2023; pp. 248–262

7. Hamid, K.; Iqbal, M.W.; Aqeel, M.; Rana, T.A.; Arif, M. Cyber Security: Analysis for

Detection and Removal of Zero-Day Attacks (ZDA). In Artificial Intelligence &

Blockchain in Cyber Physical Systems; CRC Press, 2023 ISBN 978-1-00-319030-1.

8. Khaliq, K.; Rahim, N.; Hamid, K.; Ibrar, M.; Ahmad, U.; Ullah, M. Ransomware Attacks:

Tools and Techniques for Detection; 2024; p. 5;.

9. Ibrar, M.; Riaz, S.; Khan, Y.; Asif, A.; Hamid, K.; Iqbal, M.W.; Asim, M. Econnoitering

Data Protection and Recovery Strategies in the Cyber Environment: A Thematic

Analysis. International Journal for Electronic Crime Investigation 2024, 8,

doi:10.54692/ijeci.2024.0804216.

10. Malik, N.; Delshadi, A.; Ibrar, M.; Hamid, K.; Aamir, M.; Ahmed, F.; Ahmad, G.

Behavior and Characteristics of Ransomware - A Survey; 2024; p. 05

11. zafar, zishan; Hamid, K.; Kafayat, M.; Iqbal, M. waseem; Nazir, Z.; Ghani, A. AI-Based

Cryptographical Framework Empowered Network Security. Jilin Daxue Xuebao

(Gongxueban)/Journal of Jilin University (Engineering and Technology Edition) 2023,

42, 497–510, doi:10.17605/OSF.IO/W69VT.

12. Riaz, S. Khan, Y.; et al. Software Development Empowered and Secured by Integrating

A DevSecOps Design. Journal of Computing & Biomedical Informatics 02 (2025)

doi:10.56979/802/2025.

13. Alharbi, Sattam J., Tarek Moulah. "API Security Testing: The Challenges of Security

Testing for Restful APIs." ResearchGate, Qassim University, 2023,

www.researchgate.net/publication/371174422_API_Security_Testing_The_Challenge

s_of_Security_Testing_for_Restful_APIs. Accessed 30 Nov. 2024.

14. Kumar, Aravinda A., and Divya TL. "Security Measures Implemented in RESTful API

Development." ResearchGate, 2023,

www.researchgate.net/publication/384461158_Security_measures_implemented_in_R

ESTful_API_Development. Accessed 30 Nov. 2024.

15. Yadav, Ankit Hansraj, Neeraj Jokhoo Yadav, and Om Bhupendra Singh. "Development

of RESTful WebAPI Using Token-Based OAuth 2.0 Authorization." International

Journal of Research Publication and Reviews, vol. 5, no. 6, June 2022, pp. 257–260,

www.ijrpr.com/uploads/V5ISSUE6/IJRPR30027.pdf. Accessed 30 Nov. 2024.

16. Hoang, Tan, et al. "Authentication and Authorization for RESTful WEB API in

http://www.researchgate.net/publication/371174422_API_Security_Testing_The_Challenges_of_Security_Testing_for_Restful_APIs
http://www.researchgate.net/publication/371174422_API_Security_Testing_The_Challenges_of_Security_Testing_for_Restful_APIs
http://www.researchgate.net/publication/384461158_Security_measures_implemented_in_RESTful_API_Development
http://www.researchgate.net/publication/384461158_Security_measures_implemented_in_RESTful_API_Development
http://www.ijrpr.com/uploads/V5ISSUE6/IJRPR30027.pdf


392

Scientific Computing Environment." ResearchGate, Nov. 2019,

www.researchgate.net/publication/337427360_Authentication_and_Authorization_for

_RESTful_WEB_API_in_Scientific_Computing_Environment. Accessed 30 Nov. 2024.

17. Kotha, Rajesh. "Architecting Secure REST APIs with Authentication and Authorization

Approaches for Web Services." Online Scientific Research, 2020,

https://onlinescientificresearch.com/articles/architecting-secure-rest-apis-with-

authentication-and-authorization-approaches-for-web-services.pdf. Accessed 30 Nov.

2024.

18. Llorente Viejo, Silvia. Securing a REST API Server. Master's thesis, Universitat

Politècnica de Catalunya, 2021,

https://upcommons.upc.edu/bitstream/handle/2117/377463/TFM___Memoria.pdf;jse

ssionid=DCC35F0261A6B7F76B9938336EC44B65?sequence=2. Accessed 30 Nov.

2024.

19. Gowda, Priyanka, and Ashwanth Narayana Gowda. "Best Practices in REST API

Design for Enhanced Scalability and Security." Universal Research Forum Journals, vol. 3,

no. 2, 2023, https://urfjournals.org/open-access/best-practices-in-rest-api-design-for-

enhanced-scalability-and-security.pdf. Accessed 30 Nov. 2024

20. Nguyen, Dinh Toan. Web Security: Security Methodology for Integrated Website using

RESTful Web Services. Thesis, Tampere University, 2016,

https://trepo.tuni.fi/bitstream/handle/10024/99425/GRADU-

1466664236.pdf?sequence=1&isAllowed=y. Accessed 30 Nov. 2024.

21. Sanjana, A., M. Anusha, G. Pravallika, and Mrs. S. Radhika. "REST APIs Cloud Service

Security Checks." International Journal for Research in Applied Science and Engineering

Technology (IJRASET), vol. 8, no. 6, 2020, www.ijraset.com/research-paper/rest-apis-

cloud-service-security-checks. Accessed 30 Nov. 2024.

22. Bhat, Pawan Kumar, and Rajnish Kansal. "Development of RESTful WebAPI Using

Token-Based OAuth 2.0 Authorization." International Journal of Engineering Research &

Technology (IJERT), vol. 9, no. 10, Oct. 2020, www.ijert.org/research/development-of-

restful-webapi-using-token-based-oauth-20-authorization-IJERTV9IS100048.pdf.

Accessed 30 Nov. 2024.

23. Barahona, Jorge. "Rate Limiting in Node.js." LogRocket Blog, 16 Feb. 2022,

https://blog.logrocket.com/rate-limiting-node-js/#what-rate-limiting. Accessed 30

http://www.researchgate.net/publication/337427360_Authentication_and_Authorization_for_RESTful_WEB_API_in_Scientific_Computing_Environment
http://www.researchgate.net/publication/337427360_Authentication_and_Authorization_for_RESTful_WEB_API_in_Scientific_Computing_Environment
https://onlinescientificresearch.com/articles/architecting-secure-rest-apis-with-authentication-and-authorization-approaches-for-web-services.pdf
https://onlinescientificresearch.com/articles/architecting-secure-rest-apis-with-authentication-and-authorization-approaches-for-web-services.pdf
https://upcommons.upc.edu/bitstream/handle/2117/377463/TFM___Memoria.pdf;jsessionid=DCC35F0261A6B7F76B9938336EC44B65?sequence=2
https://upcommons.upc.edu/bitstream/handle/2117/377463/TFM___Memoria.pdf;jsessionid=DCC35F0261A6B7F76B9938336EC44B65?sequence=2
https://urfjournals.org/open-access/best-practices-in-rest-api-design-for-enhanced-scalability-and-security.pdf
https://urfjournals.org/open-access/best-practices-in-rest-api-design-for-enhanced-scalability-and-security.pdf
https://trepo.tuni.fi/bitstream/handle/10024/99425/GRADU-1466664236.pdf?sequence=1&isAllowed=y
https://trepo.tuni.fi/bitstream/handle/10024/99425/GRADU-1466664236.pdf?sequence=1&isAllowed=y
http://www.ijraset.com/research-paper/rest-apis-cloud-service-security-checks
http://www.ijraset.com/research-paper/rest-apis-cloud-service-security-checks
http://www.ijert.org/research/development-of-restful-webapi-using-token-based-oauth-20-authorization-IJERTV9IS100048.pdf.%20Accessed%2030%20Nov.%202024
http://www.ijert.org/research/development-of-restful-webapi-using-token-based-oauth-20-authorization-IJERTV9IS100048.pdf.%20Accessed%2030%20Nov.%202024
http://www.ijert.org/research/development-of-restful-webapi-using-token-based-oauth-20-authorization-IJERTV9IS100048.pdf.%20Accessed%2030%20Nov.%202024
https://blog.logrocket.com/rate-limiting-node-js/


393

Nov. 2024.

24. Brewster, Owen. "Using Helmet in Node.js to Secure Your Application." LogRocket Blog,

21 Apr. 2022, https://blog.logrocket.com/using-helmet-node-js-secure-

application/#securing-express-with-helmet.

25. "express-mongo-sanitize." npm, https://www.npmjs.com/package/express-mongo-

sanitize. Accessed 30 Nov. 2024.

26. Lorique. "How & Why: REST API Authorization with JWT in Node.js." Medium, 26

May 2022, https://medium.com/@lorique/how-why-rest-api-authorization-with-jwt-

in-nodejs-71d99af923c8. Accessed 30 Nov. 2024.

https://blog.logrocket.com/using-helmet-node-js-secure-application/
https://blog.logrocket.com/using-helmet-node-js-secure-application/
https://www.npmjs.com/package/express-mongo-sanitize
https://www.npmjs.com/package/express-mongo-sanitize
https://medium.com/@lorique/how-why-rest-api-authorization-with-jwt-in-nodejs-71d99af923c8
https://medium.com/@lorique/how-why-rest-api-authorization-with-jwt-in-nodejs-71d99af923c8

	Empowering Robust Security Measures in Node.js-Bas
	Article DetailsA B S T R A C T

