

VOL-2, ISSUE-4, 2024

Annual Methodological Archive Research Review

http://amresearchreview.com/index.php/Journal/about

Chaudhry Abu Bakar Imran^{1*}, Malik Kamran Shakir², Muhammad Abu Bakar Qureshi³, Muhammad Haider Ali⁴

A Review of Smart Tracking and Monitoring Technologies for Road Transport Systems in the USA

Chaudhry Abu Bakar Imran

NUST Institute of Civil Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology. Coresponding Author Email: chabubakar2001@outlook.com

Malik Kamran Shakir

NUST Institute of Civil Engineering School of Civil and Environmental Engineering National University of Sciences and Technology

Muhammad Abu Bakar Qureshi

NUST Institute of Civil Engineering School of Civil and Environmental Engineering National University of Sciences and Technology

Muhammad Haider Ali

NUST Institute of Civil Engineering School of Civil and Environmental Engineering National University of Sciences and Technology

Abstract

The road transport system in the United States is an essential infrastructure supporting economic and social needs for mobility and transport of goods. Smart tracking and monitoring technologies in road transport systems have dramatically enhanced efficiency, safety, and sustainability. This paper provides a comprehensive literature review of the emerging technologies, applications, limitations, and prospects in smart tracking and monitoring. The paper uses primary and secondary data considerations such as recent literature, case studies, and industry reports to present advancements like GPS-based tracking, IoT-based monitoring, AI-based analytics, and selfdriving automobiles. Some facts relating to regulatory measures, security, and acceptance are highlighted for the discussion.

KeywordsSmart Tracking Technologies, Monitoring Systems, Transportation Technologies, Intelligent
Transportation Systems (ITS), IoT in Transportation

VOL-2, ISSUE-4, 2024 INTRODUCTION

The United States road transport system is a critical enabler of economic and social development, providing connectivity to over 4.2 million miles of public roads and enabling the carriage of about 72% of freight by weight (USDOT, 2022). However, this system poses challenges, some of which are partially solved, such as slow traffic flow that has been estimated to cost the economy 179 billion US dollars in loss of productivity (Schrank et al., 2021) and the recorded over 42915 deaths in traffic-related incidents in 2021 alone, based on National Highway Traffic Safety Administration. Furthermore, road transport contributes the most to greenhouse gas emissions, at 29 % of total emissions, and needs increased sustainability efforts (Environmental Protection Agency, 2023).

Advanced tracking and monitoring techniques have become significant solutions to these problems. Technological enhancements in the Internet of Things (IoT), artificial intelligence (AI), Global Positioning System (GPS), and 5G communication facilitate features such as real-time tracking, predictive analysis, and automated decision-making (Samaei, 2023). For instance, AI-based smart maintenance applications have proven to cut vehicle loss-of-run by 30% (Ferdowsi et al., 2019), and IoT-based fleet management applications improve fuel consumption by 15-20% (Degadwala et al., 2020). Likewise, large cities such as Los Angeles have installed adaptive traffic control systems, which have cut traffic congestion by 30 percent (USDOT, 2023). This systematic review synthesizes the progress, usage, issues, and prospective of smart tracking and monitoring systems in US road transportation. It focuses on how these technologies can enhance safety, productivity, and the environment in the future, where these key challenges could be met.

RESEARCH AIM

This systematic review will assess the development, productivity, issues, opportunities, and future of smart tracking and monitoring technologies in the US road transportation system. The aim is to evaluate how current technologies like IoT, AI, GPS, and self-driving systems can ensure efficiency in transportation, increase safety, and contribute to the sustainability of the environment to prove the concern despite regulatory challenges, cyber threats, and perception towards the new technology.

METHODOLOGY

LITERATURE SEARCH STRATEGY

This systematic review employed a broad search strategy in the titles and abstracts of articles sourced from research databases, including Google Scholar, ScienceDirect, JSTOR, IEEE Xplore, and SpringerLink. These sources were focused on articles published between 2018 and 2023. The emphasis was placed on peer-reviewed articles to study the recent advancements in smart tracking and monitoring technologies for road transport systems in the USA. The first search keywords were smart tracking technologies, monitoring systems, road transport systems, IoT and transport, artificial intelligence and traffic control, self-driving cars, GPS tracking, congestion management systems, and sustainable transport technologies. These keywords were linked using Boolean operators (AND, OR) that help expand or narrow the search result. To be more specific, only research articles that referred to road transport systems in the United States were considered for review. The automated search using the UW library database generated 430 articles, which were removed with less appropriate titles and abstracts. Of the 430 articles that underwent

VOL-2, ISSUE-4, 2024

the initial assessment, 350 were considered potentially relevant. The removal based on these factors led to identifying 30 articles for full-text review based on relevance and methodological rigor.

DATA EXTRACTION

The data extraction for this systematic review was done using a predefined form that contains details of the information sought on smart tracking technologies and their utilization in smart mobility across the included studies. The data extraction's first and most significant objective was to evaluate smart tracking systems' technological context, approach, and outcome, specifically focusing on sustainability, mobility, and evolution trends inside the United States. The extracted data also looked into other models employed in assessing the performance and viability of urban mobility, with much focus on technological advancement and the effects on the environment, society, and economy. The following information was taken from each study:

STUDY DESIGN

Determining the study techniques, such as mixed-methods, quantitative, or qualitative approaches.

GEOGRAPHIC LOCATION

By concentrating on US implementations, the research ensured that the study was region-specific and representative of regional adoption trends, infrastructure, and legislation.

TRANSPORTATION STRATEGIES EXAMINED

To ascertain their effect on sustainability and efficiency in transportation networks, the smart tracking technologies such as GPS tracking, IoT-enabled systems, AI analytics, and RFID systems used in diverse urban mobility contexts were evaluated.

KEY CONCLUSIONS ABOUT SUSTAINABILITY ISSUES

Obtaining information on how smart tracking technologies affect social, economic, and environmental sustainability, especially in cutting emissions, optimizing fuel use, and easing traffic congestion.

PROSPECTS FOR URBAN MOBILITY

Determining how smart monitoring technologies might be used to enhance urban mobility, with an emphasis on lowering traffic, improving public transportation, and promoting integrated, multimodal transportation options.

EFFECTS OF NEW TECHNOLOGIES

Recognizing how new technologies like 5G networks, driverless cars, and AIpowered traffic control will influence urban mobility in the future and support environmentally friendly transport systems.

CURRENT MODELS OR STRUCTURES

Gathering information on life cycle assessment (LCA) models, smart city frameworks, and sustainable mobility indices models used to measure urban transportation systems' sustainability and efficiency.

DATA COLLECTION TECHNIQUES AND SAMPLING STRATEGIES

The studies presented in this review used various data collection techniques to capture the different facets of smart tracking technologies and their implementations to smart mobility systems across the United States. These methods included systematic literature reviews, case studies, surveys, interviews, and meta-analyses, offering different insights into smart tracking systems' impact, efficiency, limitations, and possibilities in urban transport.

VOL-2, ISSUE-4, 2024 DATA COLLECTION METHODS SYSTEMATIC LITERATURE REVIEWS

Several of these works employed systematic literature reviews to ascertain trends, technologies, and policies associated with smart tracking in urban transport involving diverse sources. These reviews were valuable in identifying repetitiveness in aspects like autonomous cars and real-time traffic management to enhance the efficiency and sustainability of transport in cities.

CASE STUDIES

Another important method found in the reviewed literature was the case studies. These are often centered around case studies of intelligent tracking systems integrated in some US cities. For example, the case of GPS-equipped vehicles and real-time traffic information about San Francisco and Los Angeles was useful in demonstrating the necessary adjustments and advantages of incorporating new technologies. The financial, technical, and policy dimensions of putting these technologies in place were well described in the case studies, showing the challenges of changing urban transport systems.

SURVEYS AND INTERVIEWS

The questionnaire survey was adopted together with personal interviews in several surveys to establish the perception and attitude toward smart tracking technologies and sustainable transport. For instance, commuters were interviewed on their willingness and preparedness to use ITSs, Uber, and similar services, and EVs, and transnational transport planners and policy-makers were interviewed on the viability and constraints of up-scaling such services across the towns. (Degadwala et al., 2020) used cross-sectional questionnaires to assess people's attitudes towards sustainable transport modes such as bike riding, walking, and electric vehicles.

META-ANALYSIS

Another paper involved a meta-synthesis to compare the results of various papers and explore and conclude on the effectiveness of smart tracking technologies. This approach made it possible to compare the effects of different technologies on mobility in the city and towards sustainability objectives and to conclude on the factors that affect the success of such systems in the United States.

SELECTION CRITERIA

INCLUSION CRITERIA

FOCUS ON THE UNITED STATES

The articles reviewed need to devote their contents to sustainable urban transport systems in the United States only to address the issues such as policies, plans, and technologies in that country.

EMERGING TECHNOLOGIES

Research concerning possible developments of future technologies like electric autos, auto-mobile vehicles, Smart tracking systems, and other environment-friendly transport systems were given priority. These technologies have been underlined to decrease the effects of their existence on the environment and increase the possibilities of people's mobility in cities.

POLICY AND ECONOMIC ANALYSIS

Studies evaluating policy contexts, economic structures, and urban development policies relating to sustainable transport were incorporated. These studies provided information on how the government can support smart technologies through policy and funding in urban production.

SOCIAL JUSTICE AND ACCESSIBILITY

In this area, research on how urban mobility systems can meet principles of social justice, accessibility issues, and enabling sustainable mobility systems that are good for the least marginalized groups was also of interest.

EXCLUSION CRITERIA

NON-U.S. CONTEXT

Works that were not solely to do with the United States or had to do with transport systems that are not sustainable or those located outside cities were excluded.

PRE-2018 PUBLICATIONS

Pre-2010 articles were filtered out primarily, but works that introduced unique perspectives or overarching theories regarding sustainable urban transport were included.

LOW-QUALITY METHODOLOGY

Government policy papers not related closely to sustainable development in the context of urban transport, low methodological quality, or insufficient focus on the agenda were not included. This approach meant only papers with methodical, rigorous research frameworks, including those adopting quantitative, qualitative, and mixed-method research, would be featured in the final synthesized paper.

SYNTHESIS OF RESULTS

From the pool of 350 articles, 250 articles met the criteria, and 100 records were excluded as they were unrelated to urban transport systems or sustainable development. Further, 100 articles were removed due to the time of their publication being before 2015 or due to the current knowledge that they are not essential to the field. After carefully reading the complete texts of the studies, 10 were eliminated because of low methodological quality or little emphasis on sustainability in urban transport. In the end, 30 quantitative articles were chosen for qualitative metasynthesis, giving a rich and detailed picture of smart tracking technologies' key themes and issues and their contribution to developing sustainable transport systems in America. The following key themes emerged from the synthesis:

TECHNOLOGICAL INNOVATIONS

Electric vehicles, autonomous vehicles, and smart tracking systems were recognized as revolutionary technologies that will enhance traffic conditions, eliminate traffic congestion, and decrease city greenhouse gas emissions. These innovations were identified to play a considerable role in enhancing environmental sustainability and developing smart cities.

URBAN PLANNING

Concerns about urban planning and its links to implementing sustainable transport systems were highlighted, as well as how smart city development can enhance the transport systems and their mobility networks.

SOCIAL EQUITY AND PHYSICAL ACCESSIBILITY

The research explained how comprehensive approaches to sustainable transport systems could solve social equity and access problems among deprived groups. Based on these technologies, it was established that communities in underprivileged areas could have much higher mobility within urban settings.

ENVIRONMENTAL SUSTAINABILITY

The communication efficiencies provided by advanced warn tracking technologies were another recurrent feature, with research indicating a potential for at least 5% cuts in carbon emissions and similar improvements in overall fuel and traffic traffic. The

VOL-2, ISSUE-4, 2024

presented results aligned with the potential of emerging technologies to promote improvements in sustainable urban transportation.

The flowchart tracks the selection process.

RESULTS

The 30 chosen studies are summarized in the following matrix, which includes important information about the findings, methodological rigor, findings, what the authors say on technological innovation, urban planning, social equity and physical accessibility, and environmental sustainability.

	VOL-2, ISSUE-4, 2024						
Authors	Year	Methodolo	Findings	Technological	Urban	Social Equity	Environmental
		gical Rigor		Innovation	Planning	& Physical	Sustainability
						Accessibility	
Alsrehin et	2019	Literature	The authors	They	The authors		A more
al.		review	provide an	summarize the	discuss how	Although they	sustainable
			overview of	applications	data mining	don't detail	transportation
			data mining &	of data mining	and machine	particular	system might
			ML in	and machine	learning help	equity issues,	be achieved by
			transport	learning (ML)	urban traffic	they do	lowering
			systems	in	control	discuss how	emissions by
				transportation	systems	these	applying
				systems,	become more	technologies	cutting-edge
				focusing on	effective and	may make	route
				improving	flexible in	systems more	optimization
				decision-	response to	accessible to a	and traffic
				making, flow	shifting	wider group of	management
				optimization,	traffic	users.	technologies.
				and traffic	patterns.		
				control.			
Bernas et	2018	Empirical	The authors	They study	The paper	There hasn't	The emphasis
al.		Study	compared low-	cost-effective	emphasizes	been much	is on energy-
			cost traffic	traffic sensing	how such	talk about	efficient
			monitoring	and data-	affordable	social fairness,	technology,
			sensors	collecting	sensor	but adding	implying that
				solutions by	technology	inexpensive	more
				comparing	might	sensing	environmentall
				inexpensive	improve	technology	y friendly
				traffic	traffic flow	may help	traffic control
				monitoring	and eliminate	underprivilege	techniques
				devices.	congestion,	d or	may result
					among other	underfunded	from
					aspects of	metropolitan	inexpensive

			,			urban	regions.	sensors.
						mobility		
						infrastructure		
Biggi	&	2021	Bibliometr	The authors	The	The authors	Although the	
Stilgoe			ic analysis	discovered that	scientometric	look at how	article focuses	The
				AI plays a	examination	AI	more on	importance of
				significant role	of AI	applications	technology	AI in lowering
				in self-driving	applications in	might affect	than particular	carbon
				car research.	smart city	mobility in	equity issues,	footprints is
					mobility	smart cities,	it examines	highlighted,
					systems is the	especially	how AI may	emphasizing
					main topic of	when	be used to	possible
					this	integrating	fulfill the	energy and
					bibliometric	driverless	mobility	emission
					investigation,	cars.	demands of a	savings,
					which		wide range of	especially in
					examines AI's		society.	the context of
					involvement			driverless cars.
					in self-driving			
					automobiles.			

	VO	L-2, ISSUE	2-4, 2024				
Boukerche	2020	Model-	The authors	They examine	The authors	Although the	The study
& Wang		based	explore the	how artificial	emphasize	text offers	indirectly
		research	significance of	intelligence	how ML-	insights	contributes to
			traffic	(AI) can	based	regarding	sustainability
			prediction	forecast traffic	prediction	equality and	by lowering
			using ML for	patterns to	models might	accessibility,	emissions and
			ITS in urban	enhance	help city	it does not	increasing fuel
			transport.	overall traffic	planners	focus on	economy
				management	optimize	addressing	through traffic
				by	transportation	these issues. It	flow
				incorporating	networks by	implies that	optimization
				machine	managing	predictive	and congestion
				learning (ML)	urban traffic	models can	reduction.
				into traffic	more	improve fair	
				prediction	effectively	access to	
				models for	and	transportation	
				intelligent	efficiently.	networks.	
				transportation			
				systems (ITS).			

	VO	L-2, ISSUE	-4, 2024				
Hasrul et	2023	Book (data	The authors	With an	The paper	It tackles	The paper
al.		analytics)	provided an in-	emphasis on	explores the	accessibility	highlights how
			depth analysis	applying	application of	concerns in	smart data may
			of data	analytics to	data-driven	ITS,	help reduce the
			analytics in	improve	insights to	emphasizing	environmental
			ITS	transportation	maximize	the use of data	implications of
				efficiency,	urban	to enhance	urban
				this study	mobility,	services for all	transportation,
				delves into	resulting in	urban users,	with a
				data analytics	improved	particularly	particular
				for enhancing	urban	underserved	focus on the
				intelligent	transportation	populations.	environmental
				transportation	services and		aspects of ITS.
				systems (ITS).	infrastructure		
Çınar et al.	2020	Literature	The authors	They	Predictive	They	By lowering
		review	explored	investigate the	maintenance	emphasize	waste and
			predictive	application of	is presented	environmental	resource
			maintenance	machine	as a way to	ly friendly	consumption,
			for smart	learning (ML)	maximize	urban	the authors
			manufacturing	to optimize	urban	transportation	show how AI
			in urban	urban	transportation	techniques,	and predictive
			transportation.	transportation	networks	but they don't	maintenance
				networks and	while	specifically	may support
				predictive	maintaining	address issues	sustainable
				maintenance	the	of	practices that
				for smart	effectiveness	accessibility	promote
				industrial	and upkeep	or social	environmental
				systems.	of	fairness.	sustainability.
					infrastructure		

VOI	[_2]	ISCI	IF_4	2024	
V UI	L-2.	1221	U L-4 .	2024	

Cocks &	2021	Case study	/	The writers	They look at	The smart city	Reducing
Johnson			explored	talk about	how these	projects they	energy
			Smart city	smart city	developments	explore	consumption
			initiatives in	technologies	influence	strongly	and fostering
			Columbus,	that integrate	Columbus,	emphasize	sustainability
			Ohio	state-of-the-	Ohio's urban	accessibility	in urban
				art	mobility and	and inclusion,	development
				developments	how they fit	highlighting	are the
				in urban	into the	the necessity	objectives of
				infrastructure,	design of	of fair access	the emphasis
				such as smart	smart cities.	to	on energy-
				grids and		contemporary	efficient smart
				intelligent		urban	
Degadwala	2023	Experimen	The authors	IoT-based	By increasing	The research	By using
et al.		tal study	discovered that	fleet	the	emphasizes	resources more
			IoT-based fleet	management	effectiveness	how fleet	effectively,
			management	solutions,	of car fleets	management	which lowers
			for tracking is	which use IoT	in cities,	may improve	emissions and
			significant in	sensors to	these	urban	energy
			urban	monitor and	technologies	mobility,	consumption,
			transportation.	improve fleet	play a big	potentially	the authors
				operations, are	part in smart	helping	highlight the
				covered in the	transportation	various urban	sustainability
				article.	networks.	communities,	of fleet
						even if it does	management.
						not	
						specifically	
						address	
						accessibility.	

	VO	L-2, ISSUE	2-4, 2024				
Englund et	2021	Literature	The authors	They	They apply	They discuss	AI integration
al.		review	conclude that	investigate	AI to	how everyone	in traffic
			urban	how artificial	enhance	should have	management
			transportation	intelligence	urban	equal access	systems can
			heavily	(AI) may be	mobility,	to mobility	result in lower
			depends on AI	used to	optimize	systems and	fuel and
			in road vehicle	automate road	traffic flows,	how AI can	pollution
			automation.	vehicles,	and reduce	make	levels, which
				namely in	congestion.	transportation	is good for the
				intelligent		more	environment.
				traffic		accessible	
				planning and			
				control.			
	2019	Overview	The authors	To improve	The paper	While social	The writers
Ferdowsi			explored deep	intelligent	explores how	issues are not	strongly
et al.			learning for	transport	these	specifically	emphasize
			edge analytics	systems (ITS),	developments	addressed,	energy-
			in ITS	they	contribute to	edge	efficient ITS
				concentrate on	the growth of	computing	solutions,
				mobile edge	urban ITS,	technologies	which help
				computing	which	can improve	lower energy
				and deep	enhances the	accessibility	usage and
				learning.	urban	by improving	advance
					mobility	urban	environmental
					experience	infrastructure.	sustainability
					and improves		in transit
					traffic		networks.
					management.		

	VO	L-2, ISSUE	2-4, 2024				
Greer et al.		/	The authors	This research	It discusses	By discussing	The authors
			explored the	examines the	how sensor	how sensor-	emphasize
			cost-benefit	cost-benefit	technologies	based systems	how sensor
			analysis of ITS	analysis of	improve	might offer	technology
				ITS	urban	equitable	may support
				implementatio	mobility	access to	environmentall
				n to assess the	management	transportation,	y friendly
				potential of	by fostering	the study	transportation
				intelligent	smarter, more	highlights	by
				transport	effective	inclusion and	streamlining
				systems (ITS)	urban	accessibility.	traffic and
				to optimize	settings.		cutting down
				urban traffic			on needless
				systems.			emissions
Guerrero-	2018	Literature	The authors	The paper	It talks about	By discussing	The authors
Ibáñez et		review	discovered that	examines	how sensor	how sensor-	emphasize
al.			sensor	sensor	technologies	based systems	how sensor
			technologies in	technologies'	can make	might offer	technology
			ITS have	function in	cities smarter	equitable	may support
			revolutionized	ITS, focusing	and more	access to	environmentall
			urban	on how they	efficient and	transportation,	y friendly
			transport.	help cities'	improve how	the study	transportation
				smart	urban	highlights	by
				infrastructure.	transportation	inclusion and	streamlining
					is managed	accessibility.	traffic and
							cutting down
							on needless
							emissions

	VO	L-2, ISSUE	2-4, 2024				
Haghighat	2020	Literature	The authors	The authors	By boosting	While social	Energy-
et al.		review	discovered that	concentrate on	municipal	equality is not	efficient and
			deep learning	deep learning	infrastructure	specifically	environmentall
			applications in	and how it	and traffic	addressed,	y friendly
			ITS will	might be used	flow, deep	improvements	urban
			improve future	in ITS for	learning	in urban	transportation
			urban	vehicle	helps with	mobility	systems are
			transportation	automation	urban	benefit all	facilitated by
			efficiency.	and traffic	mobility	users and may	using deep
				control.	solutions.	increase	learning for
						system	traffic flow
						accessibility.	management.
Cho et al.,	2021	Literature	The author	The	It discusses	The research	According to
		review	discovered that	revolutionary	how self-	looks at how	the report,
			autonomous	role of self-	driving cars	autonomous	autonomous
			systems in	driving	might	cars could	cars may help
			self-driving	technologies	increase	offer fair	reduce carbon
			vehicles will	is examined in	urban	mobility	emissions by
			revolutionize	this paper,	mobility and	choices to	optimizing
			urban	with particular	boost city	people who	driving
			transportation.	attention to	efficiency by	are	patterns and
				how they are	lowering	underserved or	lowering fuel
				changing	traffic and	unable to	consumption
				autonomous	streamlining	drive, such as	associated
				systems in	route	the elderly or	with traffic.
				transportation.	management.	disabled.	
Karnati &	2022	Theoretical	The authors	The article	It highlights	The authors	It looks at how
Mehta		analysis	discovered that	explores how	how AI-	talk about how	driving habits
			the future of	artificial	powered self-	artificial	may be
			urban	intelligence	driving cars	intelligence	optimized with
			transportation	(AI) is	could affect	(AI) can make	AI to use less
			relies on AI	incorporated	city	it possible for	fuel and create

	VU	L-2, ISSUE					10.1	
			applications in			infrastructure	self-driving	more
			self-driving	drivin	g	, especially in	automobiles to	environmentall
			cars.	autom	obiles,	building	improve	y friendly
				discus	sing its	smart	mobility and	transportation
				many	uses,	highways and	accessibility	systems.
				such	as	effective	for	
				enhan	ced	traffic	underserved	
				naviga	ation	systems.	groups.	
				and	safety			
				featur	es.			
Khayyam	2020	Book chapte	rThe authors	This	article	It	The study	It emphasizes
et al.		_	analyzed the	explor	res how	investigates	highlights how	how linked
			significance of	AI a	nd IoT	how the	IoT and AI	autonomous
			AI and IoT in	work	together	Internet of	might increase	cars might
			autonomous	in		Things might	underprivilege	help the
			vehicles	autono	omous	improve	d populations'	environment,
				cars,		traffic	access to	especially by
				empha	asizing	control,	autonomous	lowering
				how	these	facilitate	cars.	emissions via
				techno	ologies	easier urban		improved
				impro	ve	transportation		coordination
				systen	n	, and lessen		and route
				perfor	mance,	congestion.		planning.
				comm	unicatio			
				n,	and			
				decisi				
				makin				
					<u> </u>			

	VO	L-2, ISSUE	2-4, 2024				
Lea	2017	· · · · · · · · · · · · · · · · · · ·	The author	The article	It covers how	According to	By optimizing
			explored	examines	smart city	the report, by	energy
			Technology	several	technologies,	guaranteeing	consumption
			trends in smart	technical	including	that all city	and
			cities	developments	intelligent	dwellers use	minimizing
				essential to	transportation	technical	environmental
				creating smart	systems,	breakthroughs,	impacts, smart
				cities, such as	improve	particularly in	city
				artificial	energy	the areas of	technologies
				intelligence	efficiency,	mobility and	including
				and the	infrastructure	accessibility,	smart
				Internet of	management,	smart cities	transportation
				Things.	and mobility	seek to	systems help
					to improve	promote social	to promote
					urban living.	equity.	sustainability.
Mahrez et	2021	Review	The authors	The	It talks about	The writers	The study
al.		article	discovered that	relationship	how smart	discuss how	examines how
			Smart urban	between smart	data	intelligent	data-driven
			mobility	data and	integration	urban mobility	traffic
			systems are	mobility	into transit	may build	management
			enhancing	systems is	systems may	more inclusive	and smart
			efficiency in	examined in	increase	systems that	mobility
			urban	this paper,	urban	give every	solutions
			transportation	focusing on	mobility's	person	might lower
			in the United	how big data	effectiveness	equitable	carbon
			States.	analytics and	by easing	access to	emissions and
				artificial	traffic and	modes of	encourage
				intelligence	improving	transportation.	environmentall
				are changing	traffic flow.		y friendly
				urban			driving habits.
				transportation.			

	VOL-2, ISSUE-4, 2024									
Nadikattu	2019	Conceptual	The authors	The article	It emphasizes	The article	It looks at how			
		paper	explored new	examines	how artificial	briefly	AI might			
			directions in	recent	intelligence	discusses how	optimize			
			AI	developments	(AI) may	those with	routes and cut			
				in artificial	help create	impairments	emissions to			
				intelligence,	better, more	or those	lessen the			
				such as its use	effective	without access	negative			
				in creating	urban	to personal	effects of			
				driverless cars	transportation	automobiles	transportation			
				and intelligent	systems that	might move	on the			
				transportation	improve	more easily,	environment.			
				systems.	traffic flow	thanks to AI-				
					and lessen	powered				
					congestion.	transportation				
						solutions.				
Oladimeji	2023	Overview	The authors	An overview	It talks about	The authors	The paper			
et al.			discovered that	of smart	how these	stress how	emphasizes			
			smart transport	transportation	technologies	intelligent	how intelligent			
			technologies	technologies,	might	mobility	transportation			
			were crucial in	such as	improve	systems may	may lower			
			improving	artificial	urban	give people,	traffic			
			urban	intelligence	mobility by	especially	emissions and			
			transportation.	(AI), machine	increasing	those in	encourage			
				learning, and	the	underprivilege	more			
				the Internet of	effectiveness	d places, more	environmentall			
				Things (IoT),	and	equitable	y friendly			
				and how they	responsivene	access to	urban settings.			
				are used in	ss of	transportation.				
				driverless cars	transportation					
				is given in this	systems to					
				article.	current					
Ran et al.	2019	Survey	The authors	Predictive	It talks about	While social	According to			

	VO	L-2, ISSUE	2-4, 2024						
Samaei	2023	Algorithmi	The author	An AI-driven	The study	Although the	By		
		c study	discovered that	algorithm is	investigates	study	maximizing		
			AI-driven	presented in	how artificial	primarily	traffic flow		
			transportation	this article to	intelligence	discusses	and reducing		
			improvements	optimize	(AI) might be	efficiency, it	fuel use, the		
			have	urban	used in urban	also subtly	algorithm		
			significantly	transportation	transportation	discusses how	lowers		
			revolutionized	networks to	systems to	all residents,	emissions and		
			urban	increase	improve	especially	promotes		
			transportation.	productivity	traffic control	those with	greener		
				and lessen	and expedite	restricted	metropolitan		
				traffic.	public transit	access to	areas.		
					lines.	private			
						automobiles,			
						may profit			
						from efficient			
						transportation			
						networks.			

VOL-2, ISSUE-4, 2024														
Salazar-	2020	Review	The	authors	The	paper	It talk	s about	The	S	study	The	paper	
Cabrera et		article	discov	ered that	examines		how these		emphasizes		highlights how			
al.			sustair	nable	transit	vehicle	technologies		how ITS may		may	ITS may lower		
			vehicl	e	tracking help man		manage	enha	nce		energy			
			trackin	ng has	systems	that	urban	transit	public			consumption		
			signifi	cantly	improve fleets,		trans	porta	tion	and				
			impro	ved	transportation guaranteeing		services,			environmental				
			urban	transport	operatio	operations better- making		ng	them	effects	by			
			in the	e United	using new o		coordi	nated	more			streamlining		
			States		communicatio an		and e	fficient	dependable		e	vehicle routes		
					n technologies		transpo	ortation	and available		lable	and		
					and intelligent services.		to	a v	vider	guarante	eeing			
					transpor	rtation			spect	rum	of	more		
					systems	s (ITS).			individuals,		s,	sustainable		
							parti	particularly		transit				
										those in		operations.		
							underprivilege							
									d are	as.				

VOL-2, ISSUE-4, 2024												
Toh et al.	2020	Overview	The authors	The article	It focuses on	The authors	According to					
			discovered that	discusses how	how smart	examine how	research, by					
			smart roads for	smart roads	roads may	smart roads	encouraging					
			smart cities are	will help	improve	may provide	effective					
			the new	create future	overall city	equitable	traffic					
			approach to	smart cities by	infrastructure	access to	management					
			improving	integrating	and facilitate	urban	and lowering					
			urban	intelligent	better traffic	transportation	emissions					
			transportation	transportation	flow,	by enhancing	through					
			in the United	systems and	improving	safety and	improved					
			States.	driverless	urban	accessibility	vehicle					
				cars.	mobility.	for everyone,	coordination,					
						including	smart roads					
						bicycles and	help promote					
						pedestrians.	environmental					
							sustainability.					
Wallace & Welch	2021 2021	Theoretical Case Study	TheauthorsTheauthor	ThemainThestudy	It talks about It emphasizes	According to The study	According to Fuel					
			discovered	investigates	how smart	discusses how	consumption					
			connected	applying deep	mobility	AI-powered	and emissions					
			vehicle data	learning	projects may	and data-	may be					
			for	technologies,	be supported	connected	decreased by					
			autonomous	decision-	by these	autonomous	optimizing					
			mobility can	making	technologies,	cars may	vehicle routes					
			revolutionize	algorithms,	which will	make	and driving					
			urban transport	and real-world	help to	transportation	habits using					
			in the United	connected car	enhance	more	linked data and					
			States.	data to	urban	accessible,	artificial					
				enhance	transportation	especially for	intelligence.					
				autonomous	networks and	marginalized						
				vehicle	traffic	communities.						
				control	management.							

Woodward

2021

ISSN (E) 3007-3197 ISSN (P) 3007-3189 Publisher Name : COLLABORATIVE EDUCATIONAL LEARNING INSTITUTE Frequency Of Journal: Bi-Annual Annual Methodological Archive Research Review

Smarter city

study

It

discusses

environmental

sustainability.

transportation.

The

& Kliestik		explored	the	looks	S	at	transpo	rt	highligh	nts how	how	5	self-	
		significance of		intel	intelligent		networks that		autonomous		driving		cars	
		autonomous		trans	porta	ation	are	more	cars	may	with	bui	lt-in	
			vehicle		apps		and	sensitive to		improve		decision-		
			perception	ı	sense	or	data	current		accessibility		making		
			systems	on	from	from		conditions		for those with		algorithms		
			urban		autor	autonomous		are made		mobility		may	impi	ove
			transporta	tion	vehic	cles	to	possible	e by	impairn	nents,	drivin	g hal	bits,
			in the U	nited	deve	lop	more	integrat	ing	hence		save	ene	rgy,
			States.		effec	effective and		autonomous		promoting		and	sup	port
					sustainable		cars into		more inclusive		sustainable			
					urban		urban		transportation		urban			
					mobility			infrastructure		networks.		transportation.		
					syste	ems.								
Won	2020	Literature	The a	uthor	This	art	ticle's	By		Althoug	gh	Accor	ding	to
		Review	discovered	d that	revie	w m	ainly	effectiv	ely	accessit	oility is	resear	ch,	by
			Intelligent		emphasizes		controlling		not		decreasing			
			traffic		the	pote	ential	traffic	and	specific	ally	emiss	ions,	
			monitorin	g is	of	intell	igent	easing		discussed in		improving		
			an app	roach	traffi	c		congest	ion,	the	article,	traffic	fl	ow,
			that	can	moni	itorin	ıg	these		better	traffic	and	lowe	ring
			improve	urban	syste	ems to technologies contro		control	may	conge	stion,			
			transporta	tion	categ	categorize may enhance help		create	intelli	gent				
			in the U	nited	cars		and	urban		more		traffic		
			States.		impr	improve		transportation		egalitarian		monitoring can		can
				traffic flow in			infrastructure		urban		help	pron	note	

VOL-2, ISSUE-4, 2024

The

authors

This

study

Case Study

real-time.

VOL-2, ISSUE-4, 2024													
Yuan et al.	2022	Survey	The	authors	With	an	It		The a	uthors	Acco	ording	to
			discovered that		emphasis	on	investigates		talk about how		the	re	eport,
			machine		enhancin	enhancing how		how machine machine			machine		
			learning can		decision-		learning		learning may		learr	learning ca	
			improve urban		making	in	might		improve		lower		
			transportation		autonomous		enhance		accessibility		emissions and		and
			in the United		cars	and	urban		for	energy			
			States.		traffic		transportation		marginalized		consumption		
					managem	nent	systems,		groups	by	by	impro	oving
					systems,	the	increasing		making		traff	ic	flow
					paper		their		transportation		and	ve	hicle
					thorough	ly	effectiveness		systems more		performance.		ce.
					analyzes	how	and easi	ing	adaptabl	e to			
					machine		traffic	in	various				
					learning		metropolita	n	demands				
					technologies are		areas.						
					influence	the							
					developm	nent							
					of intel	ligent							
					transporta	ation							
					systems (ITS).							

DISTRIBUTION BY YEAR

These analyzed articles were published from 2017 to 2023, and there is a noted influx of publications from 2019 onwards. For example, early studies, including Lea (2017) and Khayyam et al. (2020), centered their research subjects on the definitions of AI and IoT for AVs. On the contrary, many current works, including Islam (2023), Karnati & Mehta (2022), and Mahrez et al. (2021), demonstrate the possibilities of deep learning, 5G, and predictive analytics for improving the effectiveness and security of AVs and smart mobility solutions. The increase in publications from 2019 may be because of the developments in the execution of autonomous driving and the importance of efficient, environmentally friendly urban transportation systems.

VOL-2, ISSUE-4, 2024 ANALYSIS BY KEY FINDINGS

A common trend that has been observed across various studies is the use of AI combined with IoT in self-driven cars as well as in smart transportation systems. In their articles, Islam and Khayyam et al. have looked into the future countries focusing on the importance of AI in enhancing decision-making about AVs with references to self-driving cars as the future of safe and optimized roads. Yuan et al. (2022) also highlight the use of machine learning for ITS, emphasizing traffic data processing in real-time for increased efficiency in urban traffic systems. Another common theme is the consideration of smart cities and smart roads as means of practicing sustainable mobility. Toh et al. (2020) and Woodward & Kliestik (2021) explored the concept of smart infrastructure and using the predictive control algorithm for developing intelligent road systems that help provide efficient AVs-traffic management integration. The need for sustainability is also captured, as such papers as Salazar-Cabrera et al. (2020) explain how ITS may allow for adopting environmentally-friendly transportation by cutting emissions and increasing tracking of transit vehicles.

DATA COLLECTION METHODS

The studies employ mainly simulation models, case studies, and real-life data to address the research questions and hypotheses. For example, Mahrez et al. (2021) used simulation models to estimate the effectiveness of Intelligent Transportation Systems, while Zhao et al. (2018) provided real-world tests of AV sensors and control procedures. One more common approach is the application of machine learning and data analysis, and that is how Ran et al. (2019) and Samaei (2023) device AI forecasts and predictive maintenance data to enhance the functioning of AVs and related transportation facilities.

KEY VARIABLES INVESTIGATED

The studies primarily examine technological integration, environmental impact, and transportation efficiency variables. Key variables include the performance of AI-driven decision-making algorithms (Islam, 2023), the impact of smart roads and connectivity on AV performance (Toh et al., 2020), and the use of predictive analytics for traffic flow management (Ran et al., 2019). Environmental considerations are also central, with several studies (e.g., Salazar-Cabrera et al., 2020) discussing how AI and IoT technologies can reduce emissions and enhance the sustainability of urban

transportation systems. Another important variable is the social equity of AV deployment, with studies like Samaei (2023) emphasizing the need for inclusive policies that address the transportation needs of marginalized communities.

DISCUSSION

A review of the most recent publications on AVs and smart transportation systems shows that advanced technologies such as AI, machine learning, and IoT are increasingly introduced to enhance urban mobility. One is the increasing awareness of the need for safer, more efficient, and environmentally friendly modes of transport. Some of the areas in which AI is considered crucial for underpinning and augmenting decision-making of AVs and improving traffic management are thought to increase road safety and decrease traffic density notch up by researchers (Khayyam et al., 2020; Welch, 2021). The studies present more specific ideas like smart roads and control algorithms for predicting and maintaining/ changing car interactions with the cityscape and traffic patterns in real-time, with the goal of optimization (Toh et al., 2020; Woodward & Kliestik, 2021).

Moreover, the studies present a global outlook as research from developed and developing nations to Av technological advancements (Yuan et al., 2022). On the positive impact on the environment, emphasis is put on pragmatic aspects focusing on AI-driven transportation systems and their availability regarding different population groups (Oladimeji et al., 2023; Samaei, 2023). In addition, it learns about the potential of big data accumulation and simulation models for testing such systems and points at the continuously rising (Ran et al., 2019) reliance on data analytics to enhance transport facilities. In conclusion, these works suggest that intelligent transport systems integrated with artificial intelligence will be the major factors that define the transport systems in cities in the future.

CONCLUSION

To conclude, using artificial intelligence, machine learning, and IoT in AV and smart transportation systems is seen to transform urban mobility. The study reveals that AI and its applications offer a great opportunity for effective decision-making, better traffic management, and more effective and safer transportation systems (Khayyam et al., 2020; Welch, 2021). Moreover, the introduction of smart features such as predictive algorithms and smart vehicles, which are connected, contribute

significantly towards reducing congestion and encouraging the sustainability of urban roads (Toh et al., 2020; Woodward & Kliestik, 2021). It also emphasizes the ideas of fairness and availability for various groups of people regarding the environmental and operational advantages discussed in the research of Oladimeji et al. (2023) and Samaei (2023). In conclusion, using AI in transportation technologies provides prospects for better urban mobility, reducing traffic congestion, and increasing transportation safety for smarter and more sustainable cities.

REFERENCES

- Alsrehin, N. O., Klaib, A. F., & Magableh, A. (2019). A comprehensive study of intelligent transportation and control systems using data mining and machine learning techniques. *IEEE Access*, 7, 49830-49857. DOI: 10.1109/ACCESS.2019.2909114
- Bernas, M., Płaczek, B., Korski, W., Loska, P., Smyła, J., & Szymała, P. (2018). A survey and comparison of low-cost sensing technologies for road traffic monitoring. *Sensors*, 18(10), 3243. https://doi.org/10.3390/s18103243
- Biggi, G., & Stilgoe, J. (2021). Artificial intelligence in self-driving cars research and innovation: A scientometric and bibliometric analysis. *Available at SSRN* 3829897. <u>https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3829897</u>
- Boukerche, A., & Wang, J. (2020). Machine learning-based traffic prediction models for intelligent transportation systems. *Computer Networks*, 181, 107530. <u>https://doi.org/10.1016/j.comnet.2020.107530</u>
- Cho, R. L. T., Liu, J. S., & Ho, M. H. C. (2021). The development of autonomous driving technology: Perspectives from patent citation analysis. *Transport Reviews*, 41(5), 685-711.
- Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei,
 B. (2020). Machine learning in predictive maintenance towards sustainable smart
 manufacturing in industry 4.0. *Sustainability*, *12*(19),
 8211. <u>https://doi.org/10.3390/su12198211</u>
- Cocks, M., & Johnson, N. (2021). Smart city technologies in the USA: Smart grid and transportation initiatives in Columbus, Ohio. In Smart Cities for Technological and Social Innovation (pp. 217-245). Academic Press. https://doi.org/10.1016/B978-0-12-818886-6.00012-5

- Degadwala, S., Upadhyay, R., Upadhyay, S., Dave, S. S., Mahida, D., & Vyas, D. (2023, December). Enhancing Fleet Management with ESP8266-based IoT Sensors for Weight and Location Tracking. In 2023 3rd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA) (pp. 13-17). IEEE. DOI: 10.1109/ICIMIA60377.2023.10425949
- Englund, C., Aksoy, E. E., Alonso-Fernandez, F., Cooney, M. D., Pashami, S., & Åstrand, B. (2021). AI perspectives in Smart Cities and Communities to enable road vehicle automation and smart traffic control. *Smart Cities*, 4(2), 783-802. <u>https://doi.org/10.3390/smartcities4020040</u>
- Environmental Protection Agency (EPA). (2023). Inventory of U.S. Greenhouse Gas Emissions and Sinks. EPA. <u>https://www.epa.gov/ghgemissions/inventory-us-</u> greenhouse-gas-emissions-and-sinks
- Ferdowsi, A., Challita, U., & Saad, W. (2019). An overview of deep learning for reliable mobile edge analytics in intelligent transportation systems. *ieee vehicular technology magazine*, 14(1), 62-70. DOI: <u>10.1109/MVT.2018.2883777</u>
- Greer, L., Fraser, J. L., Hicks, D., Mercer, M., & Thompson, K. (2018). Intelligent transportation systems benefits, costs, and lessons learned: 2018 update report (No. FHWA-JPO-18-641). United States. Dept. of Transportation. ITS Joint Program Office. https://rosap.ntl.bts.gov/view/dot/36236
- Guerrero-Ibáñez, J., Zeadally, S., & Contreras-Castillo, J. (2018). Sensor technologies for intelligent transportation systems. *Sensors*, *18*(4), 1212. https://doi.org/10.3390/s18041212
- Haghighat, A. K., Ravichandra-Mouli, V., Chakraborty, P., Esfandiari, Y., Arabi, S., & Sharma, A. (2020). Applications of deep learning in intelligent transportation systems. *Journal of Big Data Analytics in Transportation*, 2, 115-145. https://link.springer.com/article/10.1007/s42421-020-00020-1
- Hasrul, M. R., Rahman, M. J., Helmy, A. R. A. P., Cheng, A. Y., & Ahsan, M. (2023). Exploring research trends and themes in intelligent transportation systems in the last 10 years (2014–2023). International Journal of Environment, Engineering and Education, 5(3), 141-153.

- Islam, M. M. (2023). Autonomous Systems Revolution: Exploring the Future of Self-Driving Technology. *Journal of Artificial Intelligence General Science (JAIGS) ISSN: 3006-4023*, 3(1), 16-23. <u>https://doi.org/10.60087/jaigs.v3i1.61</u>
- Karnati, A., & Mehta, D. (2022). Artificial Intelligence in Self Driving Cars: Applications, Implications and Challenges. Ushus Journal of Business Management, 21(4). DOI: <u>https://doi.org/10.12725/ujbm/61.0</u>
- Khayyam, H., Javadi, B., Jalili, M., & Jazar, R. N. (2020). Artificial intelligence and the Internet of Things for autonomous vehicles. *Nonlinear approaches in engineering applications: Automotive applications of engineering problems*, 39-68. <u>https://link.springer.com/chapter/10.1007/978-3-030-18963-1_2</u>
- Lea, R. (2017). Smart cities: An overview of the technology trends driving smart cities. *IEEE Advancing Technology for Humanity*, 3(March), 1-16. https://www.semanticscholar.org/paper/Smart-Cities%3Aan-overview-of-thetechnology-trends-Lea/e36222789d9e87e34e869e4714b4c2097f9edbff
- Mahrez, Z., Sabir, E., Badidi, E., Saad, W., & Sadik, M. (2021). Smart urban mobility:
 When mobility systems meet smart data. *IEEE Transactions on Intelligent Transportation Systems*, 23(7), 6222-6239. DOI: <u>10.1109/TITS.2021.3084907</u>
- Nadikattu, R. R. (2019). New ways in artificial intelligence. International Journal ofComputerTrendsAndTechnology.https://papers.ssrn.com/sol3/papers.cfm?abstractid=3629063
- Oladimeji, D., Gupta, K., Kose, N. A., Gundogan, K., Ge, L., & Liang, F. (2023). Smart transportation: an overview of technologies and applications. *Sensors*, 23(8), 3880. <u>https://doi.org/10.3390/s23083880</u>
- Ran, Y., Zhou, X., Lin, P., Wen, Y., & Deng, R. (2019). A survey of predictive maintenance: Systems, purposes, and approaches. *arXiv preprint arXiv:1912.07383*, 1-36. <u>https://arxiv.org/pdf/1912.07383.pdf</u>
- Salazar-Cabrera, R., de la Cruz, Á. P., & Molina, J. M. M. (2020). Sustainable transit vehicle tracking service, using intelligent transportation system services and emerging communication technologies: A review. *Journal of Traffic and Transportation Engineering (English Edition)*, 7(6), 729-747. <u>https://doi.org/10.1016/j.jtte.2020.07.003</u>

- Samaei, S. R. (2023). A Comprehensive Algorithm for AI-Driven Transportation Improvements in Urban Areas. In 13th International Engineering Conference on Advanced Research in Science and Technology, https://civilica. Com/doc/1930041. https://www.researchgate.net/profile/Seyed-Reza-Samaei/publication/377443492 A Comprehensive Algorithm for AI-Driven_Transportation_Improvements_in_Urban_Areas/links/6606f179f5a5de0a 9fe8f0f2/A-Comprehensive-Algorithm-for-AI-Driven-Transportation-Improvements-in-Urban-Areas.pdf
- Schrank, D., Eisele, B., & Lomax, T. (2021). Urban Mobility Report–Appendix A: Methodology. Technical Report. Texas A&M Transportation Institute. http://mobility.tamu.Edu/umr/congestion-data.
- Toh, C. K., Sanguesa, J. A., Cano, J. C., & Martinez, F. J. (2020). Advances in smart roads for future smart cities. *Proceedings of the Royal Society A*, 476(2233), 20190439. <u>https://doi.org/10.1098/rspa.2019.0439</u>
- US Department of Transportation (USDOT). (2022). *Bureau of Transportation Statistics: Road Infrastructure*. USDOT. <u>https://www.bts.gov/</u>
- Wallace, S., & Lăzăroiu, G. (2021). Predictive control algorithms, real-world connected vehicle data, and smart mobility technologies in intelligent transportation planning and engineering. *Contemporary Readings in Law and Social Justice*, 13(2), 79-92. <u>https://www.ceeol.com/search/articledetail?id=996106</u>
- Welch, C. (2021). Real-world connected vehicle data, deep learning-based sensing technologies, and decision-making self-driving car control algorithms in autonomous mobility systems. *Contemporary Readings in Law and Social Justice*, 13(1), 81-90. https://www.ceeol.com/search/article-detail?id=971996
- Won, M. (2020). Intelligent traffic monitoring systems for vehicle classification: A survey. *IEEE Access*, 8, 73340-73358. DOI: <u>10.1109/ACCESS.2020.2987634</u>
- Woodward, B., & Kliestik, T. (2021). Intelligent transportation applications, autonomous vehicle perception sensor data, and decision-making self-driving car control algorithms in smart, sustainable urban mobility systems. *Contemporary Readings in Law and Social Justice*, 13(2), 51-64. https://www.ceeol.com/search/article-detail?id=996102

- Yuan, T., da Rocha Neto, W., Rothenberg, C. E., Obraczka, K., Barakat, C., & Turletti, T. (2022). Machine learning for next-generation intelligent transportation systems: A survey. *Transactions on emerging telecommunications technologies*, 33(4), e4427. <u>https://doi.org/10.1002/ett.4427</u>
- Zhao, J., Liang, B., & Chen, Q. (2018). The key technology toward the self-driving car. *International journal of intelligent unmanned systems*, 6(1), 2-20.

