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Abstract
Epilepsy, the fourth most common neurological disorder,
affects 1% of the global population. Manual EEG-based
seizure detection is error-prone, impacting diagnostic and
prognostic accuracy. To evaluate the performance of machine
and deep learning methods in improving detection of epileptic
seizures, define challenges and map out future opportunities for
clinical translation. This review collected and analyzed studies
published between 2015 and 2023 indexed in PubMed, IEEE
Xplore, and ScienceDirect. This review selected studies with
an approach to seizure detection based on ML and DL for
electroencephalogram (EEG) data. Articles were excluded if
they were non-English, were reviews, or did not
present empirical results. Text, metrics and challenges data
related to algorithms were captured and processed. The review
included 50 studies which used over 10 public EEG datasets
including CHB-MIT and Bonn. The traditional ML algorithms
like SVM resulted in an accuracy of 90%, and modern DL
models like the CNNs had an accuracy of 95% or more. Hybrid
CNN-LSTM models achieved the best rates compared to other
techniques, as they used spatial and temporal EEG data jointly.
Disadvantages are focused on data, interpretability,
computational complexity, and a need for proprietary
hardware. This study highlights the potential of machine and
deep learning for high-accuracy automated seizure detection.
Addressing data quality, interpretability, and computational
demands is crucial for clinical implementation. Future AI
models should prioritize personalization and explain ability.
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INTRODUCTION
Epilepsy is a chronic neurological disorder characterized by recurrent seizures
occurring in approximately 1% of the worldwide population [1]. It ranks fourth
among common neurological disorders, behind migraines, stroke, and Alzheimer’s
disease [2]. The pathological process is abnormal and excessive activity of neurons in
the brain, which can lead to changes in consciousness, movements, and convulsions
[3]. Thus, early, and accurate seizure detection is required for appropriate
intervention and to reduce complications, ultimately improving patient outcome
[4].Conventional diagnosis for epilepsy relies on clinical workup and
electroencephalography (EEG), which is a non-invasive test to measure electrical
activity in the brain [5]. Nevertheless, manual EEG interpretation is time-consuming,
associated with inter-observer subjectivity, and potentially fallible due to human
mistakes and hence, limited in its application in extensive seizure detection [6]. As
large EEG datasets become more accessible, machine learning (ML) and deep
learning (DL) algorithms are being employed to automate steps of the detection
process [7].Seizures have also been classifed using machine learning techniques [8]
with traditional algorithms such as support vector machines (SVM), k-nearrest
neighbors (KNN), and decision trees (DT). These approaches utilize feature
extraction techniques to detect seizure patterns in EEG signals [9]. Convolutional
neural networks (CNNs) and recurrent neural networks (RNNs) are two recent trends
in the deep learning domain that have shown high performance by learning how to
derive representations of data from raw EEG signals without using any type of hand-
crafted feature extraction [10]. While conventional methods for detecting anomalies
in time series data have gained extensive attention, hybrid models—such as CNN-
LSTM (long short-term memory)—utilize both spatial and temporal features and
prove superior to traditional methods in terms of accuracy [11].While these efforts
have seen great progress, there are still many hurdles to overcome.) Inter-individual
variability in EEG data, the requirement for large, well-annotated datasets, and the
black-box characteristics of deep learning models can all impede clinical translation
[12]. In addition, computational complexity and hardware needs also reduce
the integration of AI-driven seizure detection systems in low-resource settings
[13].The objective of this systematic review is to assess the performance of ML and
DL models in detecting epileptic seizures, discuss challenges and provide future
research directions to support clinical implementation. By evaluating
research conducted from 2015 through 2023, this review summarizes the current
landscape in AI-enabled seizure detection and its impact on the future of epilepsy
diagnosis and treatment [14].

Seizure detection depends on skilled neurologist reviews of
electroencephalography (EEG) data and consists of algorithms alongside feature
extraction methods which utilize Fourier transforms together with wavelet transforms.
The success of these detection methods depends on their pre-defined heuristic
algorithms and medical supervision yet suffers from weak application to diverse
patient groups [15,16]. The autonomous learning capability of artificial intelligence
through machine learning (ML) and deep learning (DL) techniques lets these systems
generate better seizure pattern analysis from EEG data [17]. The detection capabilities
of support vector machines (SVM) together with random forests depend on human-
generated features while deep learning models based on convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) directly extract spatial and
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temporal information from raw EEG data [18,19]. Utilizing CNN-long short-term
memory (CNN-LSTM) networks as hybrid architectures has proven to enhance
seizure detection accuracy by combining spatial and temporal dependencies according
to research studies conducted by [20], [21].

The purpose of this systematic review is to assess ML and DL model
effectiveness for epileptic seizure detection through evaluation of studies from 2015
to 2023[22]. The review performs a comparative analysis which demonstrates how
different traditional ML and DL approaches evaluate through performance metrics
such as accuracy and sensitivity and specificity [23].

The Aim and objectives of study evaluation analyzes hindering factors of
clinical AI translation which include methodological data issues in combination with
model interpretability limitations and processor constraints and standardization
problems [24]. The review proposes additional research guidelines to build
personalized AI models and enhance explainable AI techniques as well as real-time
deployment methods for improved AI seizure detection in medical facilities and home
healthcare situations [25].
EPILEPTIC SEIZURE DETECTION: AN OVERVIEW
EEG-BASED DETECTION
EEG stands as the preferred method for epileptic seizure detection because it provides
precise measurement of brain electrical signals at high temporal accuracy. The onset
of seizures produces specific patterns of abnormal rhythmic activity that appears in
EEG signal recordings[26]. Timely patient intervention alongside individual treatment
plans requires accurate epileptic seizure recognition through EEG monitoring for both
medical diagnosis and continuous patient monitoring purposes[27].

EEG signals used for seizure detection exist mainly as scalp EEG (sEEG) and
intracranial EEG (iEEG). EEG testing through scalp electrodes provides a
noninvasive method of measuring brain signal activity from the surface of the head.
When measured through EEG monitoring it is used frequently both clinically and in
research activities because of its simplicity during collection and wide range of
applications [28]. The electrical signals recorded from the scalp face two challenges:
they are easily affected by artifacts and brain signal transmission becomes less precise
because electrical signals diminish before reaching the scalp due to the skull and scalp
barrier [29, 30]. The placement of electrodes sharply on the cortical surface or within
the brain during intracranial EEG (iEEG) procedures yields high-quality signals
accompanied by precise spatial mapping. iEEG technology provides superior
accuracy in seizure pinpointing but research scientists use this procedure primarily for
surgical epilepsy assessment due to its invasive nature[31].
PUBLIC DATASETS FOR EPILEPTIC SEIZURE DETECTION
Research into automated seizure detection through artificial intelligence has received
substantial progress because public EEG data now exists for developers to create and
validate machine learning and deep learning models. A collection of EEG datasets can
be found in these three commonly used sources [32].

CHB-MIT Scalp EEG Dataset gathers scalp EEG recordings which were
generated by Children's Hospital Boston and the Massachusetts Institute of
Technology (MIT) from pediatric epilepsy patients [33]. This dataset stands among
the most popular choices for determining the performance of ML/DL-based seizure
detection algorithms.
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The Bonn EEG dataset originates from University of Bonn and contains epileptic
along with normal EEG signals which enables researchers to perform controlled
seizure classification investigations [34]. The dataset splits into five smaller
collections which maintain different measurement specifications thereby supporting
studies of seizure source identification and spread detection.

Scientists can access the Temple University Hospital (TUH) EEG Corpus
which stands as one of the biggest available EEG databases where thousands of scalp
EEG data from epileptic patients exists [35]. This large data collection offers great
value for developing seizure detection algorithms because of its broad range of data
types.
MACHINE LEARNING TECHNIQUES FOR SEIZURE DETECTION
FEATURE EXTRACTION METHODS
The process of feature extraction stands as an essential requirement in ML-based
seizure detection since it converts raw EEG signals into significant representations for
accurate classification purposes [36]. Multiple feature extraction procedures operate
on EEG data because of its complex non-stationary characteristics to detect hallmark
seizure activities [37]. The extracted features belong to three general categories
described as time-domain attributes together with frequency-domain indicators and
time-frequency domain features[38,39].
TIME-DOMAIN FEATURES
 Time-domain features directly measure the variations of EEG signal amplitude
during timed intervals. The analytic features require efficient computations and
produce statistical data that describe signal forms. The most widely utilized time-
domain features consist of the following:
 Mean alongside variance provides information about signal dispersion for
central tendency measurement and baseline shifts observation during seizure
occurrences.
 Skewness together with kurtosis provides measurements of signal shape
asymmetry and peak sharpness for distinguishing between seizure and non-seizure
conditions.
 Energy along with entropy serve as measures of signal power and disorder
which help discover abrupt electrical changes occurring during seizures.
 The Horthy parameters serve as diagnostic measures which track signal
movement and complexity throughout periods of signal change in order to detect
seizure onset.
FREQUENCY-DOMAIN FEATURES
 Frequency-domain analysis requires the conversion of EEG signals into their
elemental frequencies for detecting signature seizure spectral patterns. Common
frequency-domain techniques include [40].
 The Fourier Transform separates EEG signals into different frequencies to
identify bands connected with seizures and specifically detects delta, theta, alpha, beta
and gamma activity patterns [41].
 PSD evaluates power distributions across various frequency ranges to show
increased high-frequency motions and absent low-frequency actions during seizure
occurrences [42].
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 Wavelet Transform contains features permitting a detailed analysis of EEG
data at multiple resolution scales to detect sudden patterns preceding seizure
occurrence [43].
TIME-FREQUENCY FEATURES
 The non-stationary nature of seizures makes performance better when analysis
methods capture spectral together with temporal characteristics. These methods
include:
 The Short-Time Fourier Transform divides EEG signals into short time
windows so it can run Fourier Transform analysis on these sections to detect the
changing frequency content of the data.
 The frequency resolution capabilities of Wavelet Packet Decomposition (WPD)
exceed Wavelet Transform so it helps detect seizures with greater precision.
 Hilbert-Huang Transform (HHT) analyzes EEG signals through its intrinsic
mode functions (IMFs) for assessing frequency variances at different times which
enhances the detection of minimal seizure patterns.
 The successful implementation of ML model performance for seizure
detection heavily depends on effective extraction of relevant features. The selection of
features depends on three fundamental aspects that include the unique traits of the
EEG dataset, system processing capacity and clinical application requirements for
interpretability.
TRADITIONAL MACHINE LEARNING MODELS
Epileptic seizure detection heavily relied on traditional machine learning (ML)
models because these models extract meaningful features from EEG signals to create
classifications. The models extract time domain characteristics and frequency domain
domains and time-frequency domain characteristics which allow them to detect
seizure and non-seizure states. Two main machine learning models serve the detection
of epileptic seizures [44].
SUPPORT VECTORMACHINES (SVM)
The detection of seizures using EEG signals through Support Vector Machines (SVM)
has gained popularity because SVM effectively handles data sets of high dimensions.
SVM operates through identifying the best possible separating plane that provides the
widest margin between seizure events and non-seizure categories. SVM achieves
nonlinear modeling of complex EEG patterns through radial basis function (RBF) and
polynomial kernel functions [45]. The generalized performance of SVMs comes at a
cost because their accurate operation demands thorough parameter adjustments and
results in high computational demands when handling big datasets.
RANDOM FOREST (RF)
The random subset of EEG data used for training the decision trees in RF models
combines into a single prediction through majority voting techniques. The
interpretability of RF models together with their robustness against over fitting
describes their ability to handle noisy EEG data effectively. The lack of appropriate
feature selection makes RF perform poorly in high-dimensional spaces [46].
K-NEAREST NEIGHBORS (KNN)
It classifies EEG signals through K-Nearest Neighbors (KNN) by determining the
majority class among k nearest training samples. The implementation of KNN
remains straightforward since the method needs no explicit model training process
which enables its application in real-time situations [47]. The choice of k parameter
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along with the selected distance metric directly affects KNN performance yet its
calculations become inefficient when processing extensive datasets.
DECISION TREES (DT)
The hierarchical classification of EEG signals in Decision Trees occurs when decision
rules slice feature space into succession. These algorithms maintain high
interpretability together with computational efficiency which makes them a standard
solution for seizure detection systems [48]. DTs will tend to produce over fitting when
applied to complex datasets of EEG signals. By using pruning techniques together
with ensemble methods such as RF and boosting this limitation can be reduced [49].
ENSEMBLE LEARNING APPROACHES
Ensemble learning methods that include bagging and boosting enhance typical ML
models through the composition of multiple basic classifiers for producing effective
solutions.
PERFORMANCE ANALYSIS OF ML MODELS
 To evaluate the performance of ML models for detecting epileptic seizures
multiple critical metrics are employed.
 The accuracy score evaluates how precise the model identifies between seizure
and non-seizure activities.
 An accurate detection of real seizure events defines sensitivity (Recall) within
the model. Higher model sensitivity remains vital to minimize false negative
detections because they would cause seizures to go undetected.
 The model needs to demonstrate its capability to correctly detect non-seizure
activities as detailed by its specificity quotient. Creating a specific model helps lower
the number of incorrect warnings and alarms.
 F1-score represents the harmonic relationship between precision and
sensitivity to properly manage false-positive and false-negative outcomes.
COMPARISON OF ML MODELS
ML Model Accuracy Sensitivity Specificity F1-score
SVM High Moderate to

High
High Moderate to

High
RF High High High High
KNN Moderate Moderate Moderate Moderate
DT Moderate to High High Moderate Moderate
Ensemble
(Boosting)

Very High High High Very High

Among traditional ML models, ensemble learning approaches (e.g., RF and boosting
techniques) consistently outperform standalone classifiers by leveraging multiple
weak models to improve robustness. However, these models rely on feature
engineering, which may limit their ability to generalize across diverse EEG datasets.
DEEP LEARNING TECHNIQUES FOR SEIZURE DETECTION
Epileptic seizure detection underwent a transformation through deep learning
technology which allows the recognition of high-dimensional patterns in EEG signals
without manual process intervention. Deep learning models directly extract spatial
temporal and spectral information from source or slightly preprocessed EEG data
without needing predefined handcrafted features that traditional machine learning
methods need. This section examines deep learning seizure detection methods
focusing on CNNs, RNNs, hybrid configurations, together with performance
evaluation frameworks.
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CNN-BASED APPROACHES
Seizure detection involves the extensive use of Convolutional Neural Networks
(CNNs) because these networks successfully extract patterns that exist in spatial space
from EEG signals. The different processing forms CNNs use to analyze EEG data
entail multiple structures [50].
 The 1D CNN extracts temporal patterns from raw EEG time-series data when
used directly on the data.
 The signals from EEG undergo two-dimensional CNN processing by
transforming them into spectrogram or time-frequency solutions including Short-Time
Fourier Transform and Wavelet Transform to merge spatial patterns with spectral
features.
 Spatial-temporal feature extraction is possible across different electrode
positions through the implementation of 3D CNNs when working with volumetric
multi-channel EEG data input.

CNN-based models present high detection accuracy for seizures because they
automatically learn features and develop hierarchical representations of EEG signal
properties. Long-term dependencies between EEG data points remain difficult for
these models even though they succeed in detecting seizure patterns [51].
RNN AND LSTM-BASED MODELS
The recurrent neural network family of models together with long short-term memory
(LSTM) demonstrates outstanding ability in recognizing temporal connections within
EEG signal series. Whenever these models operate on sequential data they sustain
temporal memory between time steps which optimizes their capacity for tracking
seizure event dynamics [52].
 Recurrent neural networks (RNNs) recreate EEG signal sequences with the
help of repeating connections although they experience fading gradients over
extended time dependencies.
 LSTMs solve the RNN limitations through memory cells together with gating
mechanisms to maintain long-range temporal information in EEG signals.
 Gated Recurrent Units (GRUs) stand as a streamlined version of LSTMs used
for seizure detection applications because they perform with reduced computational
requirements.
 The detection capability of RNN- and LSTM-based models enables sequence
pattern identification in EEG data although these models need large computational
power during training processes.
HYBRID DEEP LEARNINGMODELS
Scientists use hybrid architectures which join CNNs with RNNs/LSTMs to exploit
spatial along with temporal dependencies in EEG signals. The integration of CNN
features together with LSTMs or Transformer-based models makes up these hybrid
models that analyze EEG patterns sequentially [53].
 Both CNN layers of the CNN-LSTM extract spatial characteristics and LSTM
layers process temporal relationships to increase detection performance of seizures.
 The latest generation of Transformer architectures together with its derivatives
including BERT and ViTs has been studied for seizure detection purposes by
leveraging its advanced sequence modeling mechanism through attention mechanisms.
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 Auto encoders together with GANs serve as unsupervised seizure detection
algorithms that conduct data augmentation to increase system resilience when dealing
with minimal labeled EEG samples.
 Models which combine separate architectures reach top performance levels yet
their execution complexity makes real-time applications difficult to implement.
PERFORMANCE COMPARISON OF DL MODELS
The effectiveness of DL models is typically evaluated against traditional ML
techniques using key performance metrics such as accuracy, sensitivity, specificity,
and F1-score.
COMPARISON OF DL AND ML MODELS
Model Accuracy Sensitivity Specificity F1-score Computational

Cost
1D CNN High High Moderate High Moderate
2D CNN Very

High
High High Very

High
High

3D CNN Very
High

Very High High Very
High

Very High

RNN Moderate Moderate Moderate Moderate High
LSTM High High High High High
CNN-LSTM Very

High
Very High High Very

High
Very High

Transformer Very
High

Very High Very High Very
High

Extremely High

Traditional
ML (SVM,
RF)

Moderate Moderate High Moderate Low

The detection performance of seizures benefits from the use of CNN-based models
especially through 2D CNNs together with hybrid CNN-LSTM architectures above
traditional ML techniques. The promise of generator-based models exists despite their
limitation of requiring heavy computational power which reduces their usefulness for
real-time implementation.
FUTURE DIRECTIONS IN PERFORMANCE OPTIMIZATION
Future research needs to center on three approaches to boost seizure detection
effectiveness.
 The deployment process should be optimized to support deep learning models
enabled for edge computing and wearable technology devices.
 The improvement of data imbalance can be achieved by using both
augmentation methods alongside adaptive learning techniques.
 Explainable AI (XAI) methods should be implemented to enhance the
interpretation capabilities of AI models.
 The implementations will allow AI seizure detection approaches to merge with
clinical practice norms.
DATA QUALITY AND AVAILABILITY
The performance and effectiveness of ML/DL models largely depends on the quality
and quantity of provided EEG data. Methods which release their data to the public
commonly present fundamental problems with class biasing alongside missing data
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points together with deficient patient population representation thus reducing model
application scope[55,56].

The successful application of EEG-based seizure detection requires
standardization of recording techniques and electrode positions and artifacts reduction
since these factors affect model development consistency between different clinical
environments[57].
GENERALIZABILITY AND ROBUSTNESS
The high performance of multiple digital processing models on isolated datasets
transforms into poor generalization capability during examinations involving different
clinical environments including various hospitals and devices and patient
demographic groups[58].

According to researchers the process of overfitting exists as a recurring
problem leading algorithms to master dataset-specific patterns at the cost of general
seizure-related features for multiple patient populations[59].
COMPUTATIONAL COMPLEXITY AND REAL-TIME CONSTRAINTS
Real-time implementation requires effective hardware-specific compression of
models together with acceleration methods and edge computing techniques to keep up
with the needs of portable EEG devices for real-time seizure detection[60].
LACK OF EXPLAINABILITY AND CLINICAL ACCEPTANCE
The unexplainable nature of black box AI systems creates obstacles for medical
professionals to understand program decisions which affects their confidence about
system reliability during crucial medical incidents[61].

Transparent explanations from Explainable AI (XAI) methods allow essential
understanding about how classification of EEG signals and seizure detection
works[62].
LIMITATIONS
Several hurdles prevent the practical implementation of AI-powered seizure detection
in medical facilities although major technological progress has occurred. Model
deployment limitations in practice arise due to data availability problems and
theoretical model adaptability requirements together with CPU demands and
interpretability issues.
CHALLENGES AND FUTURE DIRECTIONS
CHALLENGES IN AI-DRIVEN SEIZURE DETECTION
 Data Standardization and Interoperability: The need for uniform EEG formats
and annotations.
 The implementation of personalized AI models solves problems linked to
different individual patient characteristics.
 Efficient Model Deployment: Optimizing AI models for real-time applications
on portable devices.
 Regulatory and Ethical Considerations: Ensuring compliance with medical
regulations and ethical AI usage.
FUTURE DIRECTIONS
 XAI has developed the ability to make AI more transparent through attention
based mechanisms and features attribution during model interpretation.
 Detection accuracy gets improved through mergings of EEG data with various
physiological signals to produce multimodal information.
 AI models should be developed to forecast seizures just before they happen.
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 A clinical validation phase must include prospective trials together with
collaboration between medical specialists and researchers.
CONCLUSION
Artificial intelligence methodologies particularly machine learning and deep learning
have upgraded epileptic seizure detection by developing automated EEG examination
with high precision at efficient speeds. Standard ML techniques depending on
manually designed features have shown successful results yet DL versions including
CNNs and RNNs together with hybrid systems outperform them as they analyze raw
EEG data to obtain spatial and temporal characteristics. Medical institutions face
difficulties with standardizing data while developing personalized systems and
deploying real-time implementations and conforming to regulations which prevents
full use in clinical procedures. The development of AI systems requires future
research to concentrate on three main objectives: making AI systems explain their
decision-making processes, improving data integration between different medical
sources while maintaining real-time seizure prediction. AI-based seizure detection
requires combined work between researchers in AI and neurologists and biomedical
engineers to establish practical usage in clinical settings which benefits patient results
and life quality. The solution of these issues will lead to the development of patient-
friendly robust scalable AI methods for epilepsy management.
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