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With the development of smart grid infrastructures to accommodate distributed
energy resources, electric vehicles, and dynamic demand-side operations,
responsive and precise load forecasting becomes more essential than ever. The
problems associated with remote servers and constant flow of data lead to latency,
scalability and privacy issues experienced by traditional centralized forecasting
models. This paper presents an adaptive load forecasting system based on deep
learning (long short-term memory (LSTM) networks) dusted to edge computing
devices. The system uses real-time data, provided by smart meters or
environmental sensors to provide localized, on-device predictions with minimal
network dependency. Real-world data experiments reveal that the Edge-LSTM
model has a better predictive performance, as well as much less inference latency,
and greater adaptation ability than centralized LSTM, ARIMA, and feedforward
neural networks. The findings also indicate a better utilization of network
bottlenecked conditions and energy efficiency in resilience conditions which
demonstrates the scalability of deep learning making use of edge intelligence to
ensure decentralized operations in terms of smart grid. It is potentially an advance
in the direction of real-time, privacy-preserving, and energy-conscious forecasts in
future power networks.
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INTRODUCTION

Smart grids combine new communication, automation, and computing technologies with

traditional power systems and are facilitated by the current global shift toward sustainable

energy infrastructure (Gungor et al., 2020). The aim of these grids is to optimize power

generation, transmission, and consumption through two-way data streams between utilities and

consumers (Fang et al., 2019). The other key part of this optimization is proper load forecasting,

as it enables the predictive understanding of future electricity demand patterns, which may be

used to make operational decisions related to unit commitment, dispatch scheduling, and energy

trading (Al-Musaylh et al., 2018).

Conventional load forecasting methods, such as linear regression, autoregressive analysis,

and support vector machines, have proved to be of use in a structured context where

consumption is steady (Hong & Fan, 2016). Nonetheless, the proliferation of distributed

renewable energy resources, variable patterns of user activity, electric vehicles, and smart

appliances has brought non-linearities and dynamism to consumption that may not be well

recognized by the classical models (Taieb & Hyndman, 2014). Thus, artificial intelligence (AI)

methods have increasingly gained popularity, especially deep learning models, as they have

better capacity to build complex temporal and spatial relationships across data units (Zhang et al.,

2021).

Time series forecasting and deep learning Deep learning architectures like the long short-

term memory (LSTM) networks with gated recurrent units (GRUs) are accurate in predicting

time series data especially short-term load forecasting (Marino et al., 2016). The models are

beneficial at working with non-linear relationships and sequential dependencies and are proven

to be greater than shallow learning models and classic statistical models (Ahmed et al., 2020).

Nonetheless, their use in actual grid settings is typically limited by the imperative of having

centralized high-efficiency computing facilities. Smart meters often require the transfer of energy

data to distant servers where it is processed, presenting a delay, bandwidth burden, and the risk

of data privacy (Wen et al., 2021).

The solution to these challenges is edge computing, which is based on the paradigm of

decentralizing data processing by moving the computation closer to the data sources. With

machine learning deployed to the edge on smart meters, home gateways, or local substations, the

need for cloud storage and the response time to the problem decreases, as data can be treated on-

site in real-time (Shi et al., 2016). The recent research examples have demonstrated how AI-
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EDGE could be combined in different sectors, such as industrial automation, healthcare, and

transport (Satyanarayanan, 2017; Chen et al., 2019). In smart grid applications, this integration

could dramatically change load forecasting to an activity that is decentralized and proactive

rather than centralized and reactive (Gharaibeh et al., 2020).

Still in its early stages, deep learning and edge computing in smart grids offer a

promising way forward to achieve more adaptable and resilient energy systems. Adaptive load

forecasting is a technique where forecasting models are continually learned and updated when

the consumption behavior changes, weather patterns vary, and the conditions on the grid alter

(Amirian et al., 2020). Adaptive forecasting attached to edge intelligence can enable decentralized

grid nodes to make informed decisions locally, forming microgrids and prosumers with

autonomy and ability to act without overloading central systems (Yang et al., 2022).

Nevertheless, even with the promise, deep learning on edge devices is not without its

challenges. These can be categorized as minimal computational resources, energy limitations,

model compression tradeoffs, and inferences in real-time (Zhou et al., 2019). The development of

deep quantization models, federated learning and efficient network architectures however, has

been alleviating these encumbrances in recent times and it is easier than ever before to execute

deep models on platforms limited in resources (Li et al., 2021). In addition, policy and technology

changes are driving utilities to consider decentralized intelligence in their digitalization plans

(IRENA, 2022).

The proposed research aims to address this gap by proposing and testing a load

forecasting system which integrates learning capabilities over time associated with LSTM

models with low-latency capabilities of edge computing architectures. Precisely, the research

studies the mechanism of applying successful adaptive forecasting to edge devices as a part of a

smart grid system and evaluates the performance against conventional centralized forecasting

models. In this way, this piece adds to the increasing knowledge base on decentralized

intelligence in energy systems and acts as a stepping stone towards further smart grid

innovations.

LITERATURE REVIEW

1. EVOLUTION OF LOAD FORECASTING TECHNIQUES

Load forecasting is one of the pinnacle functions of electrical utilities that have been in operation

over decades. Old models of forecasting, including linear regression, exponential smoothing, and

autoregressive integrated moving average (ARIMA), have been popular in both short- and long-

http://amresearchreview.com/index.php/Journal/about


Annual Methodological Archive Research Review
http://amresearchreview.com/index.php/Journal/about

Volume3, Issue 7 (2025)

127

term demands (Ghofrani et al., 2021). Nevertheless, the basic limitations of such models are their

inapplicability to model nonlinear and time-varying phenomena typical of contemporary energy

systems. As there is an escalating rate of penetration of non-central energy sources of renewables,

electric-powered automobiles, and prosumer-based power consumption, energy demand patterns

have recently been evolving as more stochastic and dynamic (Chandrashekar et al., 2023). The

complexity has made the traditional forecasting methodologies less efficient in the real time or

near real time in the grid scenario.

2. MACHINE LEARNING AND DEEP LEARNING IN LOAD FORECASTING

The development of machine learning (ML) and deep learning (DL) models has tremendously

increased the ability to forecast by utilities. Random forests models as well as support vector

regression and gradient boosting machines have been successfully applied in modeling short-

term trends of energy (Giorgi et al., 2020). Nevertheless, the deep learning models, especially the

recurrent neural networks (RNN), long short-term memory networks (LSTM), and

convolutional neural networks (CNN) have been shown to perform exceptionally well in

modelling the time-series data with long range dependencies (Iqbal et al., 2023). Incorporation of

LSTM networks that have been developed to alleviate the problem of vanishing gradient in more

detail is especially suitable to handle sequential data and thus have had the subsequent model

architecture in the context of energy forecasting (Behera et al., 2022).

In addition, hybrid deep learning networks involving CNN as a spatial feature

representation model and LSTM as a time structure model have further increased performance in

terms of accuracy and generalization (Tang et al., 2021). Transformer models and attention-

based models are also recently gaining popularity to make load forecasting since they enable

representing global dependencies and increasing their interpretability (Du et al., 2024). But their

use has so far been restricted on edge environments because of their complexity in computation.

3. REAL-TIME FORECASTING REQUIREMENTS AND LIMITATIONS OF

CENTRALIZED SYSTEMS

The cloud-based deep learning systems have beneficial features in terms of capacity and training

potential but inculcate considerable drawbacks when it comes to the latency, security, and

bandwidth needs. The centralization of architectures implies a need to send the collected energy

data via smart meters or IoT devices to distant servers, process it, and transfer it back to make

decisions, which may be a drawback in case of a real-time environment (Yadav et al., 2022).

Furthermore, the subject of sensitive energy data transmission raises concerns regarding data
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privacy and security, especially in cases where the same is managed by third-party service

providers (Kim & Park, 2020).

The inclusion of latency problems is also critical at peak times or whenever the microgrid

environment is mission-critical and speedy response is required. Centralized systems are

inflexible in scaling and adapting to localized or edge-specific abnormalities thus, inefficient. This

caused researchers to consider decentralized solutions to avoid communication bottlenecks and

offer a timely reaction (Das et al., 2023).

4. EMERGENCE OF EDGE COMPUTING IN SMART GRID SYSTEMS

Edge computing, where computation takes place at or close to the point of generation, is also

becoming clear as a game-changer toward smart grid operation. Edge computing can also

minimize latency by bringing data collection and computational procedures closer and consume

less bandwidth, in addition to improving the reliability of the system (Hussain et al., 2023). Edge

devices involved in smart grid applications, including advanced metering infrastructure, (AMI),

local substation computers, and home energy gateways, may be endowed with lightweight

computational modules to perform real-time analytics and forecasting models (Ranjan et al.,

2021).

Edge computing is also advantageous to localized grid activities which make micro grids

and distributed energy resources run independently when the grid has been disturbed or

disrupted. Such decentralization is consistent with the changing form of the smart grid that is

growing more spread out and dynamic (Miah et al., 2022). Further, the edge architectures

support real time demand response programs, used to balance supply at rapidly varying

environments.

5. DEEP LEARNING AT THE EDGE: OPPORTUNITIES AND CONSTRAINTS

Deploying deep learning models to edge devices has significant advantages in adaptive load

forecasting, yet there are trade-offs affiliated with it. Edge devices typically have restricted

processing halt, memory and battery life and therefore deep learning structures that require a

large number of computations are troublesome to deploy in edge devices (Javed et al., 2024). Due

to the recent advances in model optimization, e.g., by pruning, quantizing, and knowledge

distillation, it is now feasible to run LSTM, CNN, or even Transformer-based models on edge

devices with satisfactory performance indicators (Wang et al., 2022).

Frameworks such as TensorFlow Lite, PyTorch Mobile, and ONNX Runtime have been helping

towards edge deployment of DL models. These tools enable the transformation of common
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models to efficient models that are edge-compatible and can be used to perform inference on low-

power systems such as the Raspberry Pi, Jetson Nano, or even smart meters (Fernandez et al.,

2021). Direct training of such models on edge devices has thus far been infeasible, but federated

learning methods are increasingly being studied as model-updating techniques that avoid the

need to transmit raw data to main servers (Nasir et al., 2023).

6. ADAPTIVE FORECASTING IN DECENTRALIZED GRID ENVIRONMENTS

Adaptive forecasting is how a given system can adapt or even retrain on new incoming data. This

ability is essential in the energy systems setting, as the temporal demand is designated with a

seasonal effect, behaviour, and unexpected circumstances such as plot interruption or blackout

(Molina, 2023). The inclusion of adaptivity in the forecasting system will make sure that the

predictions will be correct under dynamic conditions of operation.

Many researchers have applied the concept of online learning and transfer learning to

offer the capability of continuous adaptability of load prediction models (Patel & Kulkarni, 2022).

Other methods that include semi-supervised or reinforcement learning that have been proposed

can enable the forecast models to update dynamically without preparing the labeled dataset

thoroughly (Li et al., 2024). These techniques can be effectively applied in edge environments

because every node can use its distinct consumption and generation patterns.

7. GAPS IN LITERATURE AND RESEARCH DIRECTION

Despite the fact that the sphere of deep learning and edge computing has been developed rather

well independently, the exploration of the combination of these two spheres in the context of the

smart grid forecasting process is still not particularly well-grounded. The current literature

proposes either incredibly precise deep learning models to be used in centralized architectures or

simple rule-based analytics at the edge (Rehman et al., 2022). There exist no unified frameworks

that intertwine edge deployment, deep learning flexibility, and actual instantiation in grids at

large.

In addition, most studies overlook the temporal retraining and the heterogeneity of edge

devices in the forecasting systems. Research tends to dismiss the possibility of edge devices with

various hardware capabilities supporting various models, which results in an end-to-end

implementation method, which is not necessarily optimal (Bisht et al., 2021). Benchmarking

various architectures on different edge platforms in a practical scenario on the grid is an

important requirement therefore experimental studies are urgently needed.
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This paper attempts to fill such gaps by suggesting and analyzing a load prediction framework

that adopts adaptive learning on deep learning models delivered across heterogeneous edge

computing platforms. Integrating time-based learning via LSTM networks with edge sniffing

deployment aims at providing a scalable, decentralized and precise solution to smart grid

situations in the future.

METHODOLOGY

1. RESEARCH DESIGN AND FRAMEWORK

In the proposed study, research design is pursuing an experiment to test the effectiveness of deep

learning-based forecasting to load models that are implemented on edge computing devices in a

smart grid environment. This is to determine the accuracy, latency, and resource consumption of

adaptive models to run in decentralized environments with reference to traditional ones that are

centralized. Its design includes a long short-term memory (LSTM) neural network that would

represent an actual scenario of grids applied to the Raspberry Pi 4 devices using the TensorFlow

Lite framework. Adaptive retraining of the forecasting process took place iteratively using

incoming data streams and modified to simulate variable load behaviour and environmental

variations.

2. DATA ACQUISITION AND PREPROCESSING

To conduct the experimental analysis, the paper has adopted the Individual Household Electric

Power Consumption Dataset of the UCI Machine Learning Repository. This data set consists of

more than four years of data at a minute resolution of one household, which has features like

active, reactive power, voltage, and sub-metering values. Other related meteorological data,

which include temperature and humidity, obtained through the API of National Renewable

Energy Laboratory (NREL) were used in enhancing the dataset and simulating conditions that

would offer realistic outcomes related to power consumption.

Before training models, extensive preprocessing was done. Linear interpolation was used

to process missing values on continuous variables, whilst urging forward-filled imputation to

process missing values of categorical labels. The dimensions of the features were standardized

using Min-Max scaling, to map the dimension values to 0 to 1, which enhances the neural

network convergence. The weighted variable, the total power use was obtained by summation of

the sub-meter, and a random sequence of time windows of 60min was applied to forecast the

consequent load in 15min. The method emulates the short-term predictive needs necessary in

real-time energy management in smart grids.
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3. MODEL ARCHITECTURE AND CONFIGURATION

The fundamental forecasting framework is a series of many-layer LSTM that discusses a

protracted term temporal dependency of loads. The model consists of two sequentially placed

LSTM layers with 64 and 32 hidden neurons respectively, and the last layer is the dense fully

connected layer which takes the output single value determining the predicted load. Between the

layers, the dropout rate of 0.2 was utilized ensuring overfitting was prevented. Tanh activation

was applied to hidden layers and as for the output, it used linear activation corresponding to the

regression task.

The model was trained on the Adam optimizer, learning rate of 0.001 and mean squared

error (MSE) loss function. Dynamically adjusted learning rate and early stopping and learning

rate scalars were introduced during training to prevent any unnecessary training epochs and

adapt. Model training was conducted in an NVIDIA GPU training environment, and converted

to a lightweight TensorFlow lite format appropriate as an edge deployment.

4. EDGE DEPLOYMENT AND ENVIRONMENT SETUP

The LSTM model was implemented on Raspberry Pi 4 Model B computers with 4GB RAM, a

quad-core, ARM Cortex-A72 processor to test the real-time performance. The trained model was

inferred on the device at high speed using the low memory TensorFlow Lite interpreter. A non-

blocking API written in Python was created to imitate the real-time data uptake of smart meters

and run the forecasting model periodically.

The edge devices were set up to store and process local time-series data and to retrain or

finetune the model (through transfer learning) with each 24-hour cycle. This is used to simulate

adaptive learning behaviour and thereby enables the model to change learning parameters given

localized changes in consumption patterns. To reduce the overhead of the computations, the sizes

of the batches and the epochs of training were dynamically adjusted according to the availability

of the resources in the system.

5. BASELINE MODELS AND COMPARATIVE SYSTEMS

So as to assess the performance of the proposed edge-based LSTM model, three compare-and-

contrast models were constructed: a conventional centralized LSTM model at a distant cloud

host, an autoregressive integrated moving average (ARIMA) model fitted with historic data, and

a plain O(1) feedforward neural network (FNN) as a baseline model that did not require sequence.

The input data and feature sets were identical to all models, which enabled their consistent

comparison on several performance dimensions.
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The LSTM model is a centralized one that runs on an Amazon Web Services (AWS) EC2

instance with 16GB RAM and 4 vCPUs. Compared to the edge model, this experiment included

raw input data sent to the cloud server using HTTP REST APIs, performed inference, and

returned predictions. It allowed a comparison side-by-side the response time, bandwidth and

energy consumption of the systems involved in the forecasting process.

6. EVALUATION METRICS

The model was assessed based on several performance indicators. The method of estimating root

mean squared error (RMSE), mean absolute error (MAE), and mean absolute percentage error

(MAPE) were used to determine the accuracy of forecasting. The edge platform, and cloud

platform were tracked in a similar fashion in terms of inference latency (milliseconds), memory

usage, and CPU utilization to judge real-time viability using the psutil library. The efficacy of

adaptive retraining was also assessed using the time to do incremental updates and the

subsequent increase in model performance after adaptation.

Statistical validity was guaranteed by repeating each experiment five times on the same

conditions and averaging all the results. The effect of network failure was also tested by briefly

interrupting the internet connection on the edge device to assess its capability to perform

functions independently of central servers.

7. ETHICAL CONSIDERATIONS AND DATA PRIVACY

As the publically available and deanonymized data was used in this research, there were no

explicit ethical implications. Nonetheless, the deployment model was such that data privacy was

considered. All calculations, be it model updates or inference, were done locally on the edge

device and no raw user data is sent to an external server. This follows best approaches to edge-

AI design and complies with data protection laws globally including GDPR.

RESULTS

1. FORECASTING ACCURACY ANALYSIS

Table 1 provides the summary of the key forecasting statistics, including Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the

R2 Score, which are visualized in Figure 1 as well. The Edge-LSTM model performed better

than any other model in accuracy. It reported a minimum RMSE of 0.31 kW, MAE of 0.23 kW,

and a MAPE of 4.8%, as well as an impressive R 2 value of 0.93 which shows high variance

explanation in load patterns. By contrast, the centralized LSTM was inefficient, suggesting that

it is less sensitive to local differences because it had a higher RMSE (0.38 kW) and MAPE (5.7%).
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TABLE 1: FORECAST ACCURACY METRICS

Model RMSE (kW) MAE (kW) MAPE (%) R² Score

Edge-LSTM 0.31 0.23 4.8 0.93

Central-LSTM 0.38 0.29 5.7 0.88

ARIMA 0.46 0.35 6.4 0.75

FNN 0.41 0.30 6.1 0.81

FIGURE 1 R² SCORE COMPARISON

The ARIMA model, which is commonly used in legacy forecasting systems, fared the worst on

all criteria, having an RMSE of 0.46 kW and MAPE of 6.4%. These low performance levels are in

line with its failure to manage nonlinear and complex load fluctuations. The FNN model showed

intermediate results with worse performance compared to both LSTM based approaches but
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better compared to ARIMA. These results are further supported by the bar plots in Figure 1,

which clearly indicate a visual difference in the level of precision between Edge-LSTM and the

others.

2. LATENCY AND THROUGHPUT PERFORMANCE

Latency of inference and throughput in prediction were crucial real-time performance metrics

benchmarked on all of the models and briefed in Table 2 and illustrated in Figure 2. The Edge-

LSTM model showed an outstanding latency score, and it takes an average of 32 milliseconds to

make a prediction. This is much faster than the centralized LSTM (110 ms), ARIMA (102ms),

and the FNN (89 ms). The resulting (constant) reduction in latency is a direct result of the

removal of the network overhead via on-device execution.

TABLE 2: INFERENCE LATENCY AND THROUGHPUT

Model Inference Latency (ms) Throughput (predictions/sec)

Edge-LSTM 32 31.25

Central-LSTM 110 9.1

ARIMA 102 9.8

FNN 89 11.2

FIGURE 2 PREDICTION THROUGHPUT
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Regarding throughput, Edge-LSTM could handle about 31.25 predictions per second, which was

significantly more in comparison to the centralized alternatives. This shows that it has high

potential in real-time markets where it is needed to react to fluctuations in the grid at high

frequencies.

3. SYSTEM RESOURCE EFFICIENCY

Inference system resource use was captured, measuring CPU use, memory use, and disk space

needs as displayed in Table 3 and depicted in Figure 3. Edge-LSTM used 64 percent of the CPU

and 390 MB memory on average, though relatively heavy, this was also considerably more

efficient even than the Centralized LSTM, which consumed more than 2 GB of RAM and

exceeded 58 MB disk usage.

TABLE 3: SYSTEM RESOURCE USAGE

Model CPU Usage (%) Memory Usage (MB) Disk Usage (MB)

Edge-LSTM 64 390 5.4

Central-LSTM 38 2048 58.2

ARIMA 41 256 2.1

FNN 44 512 12.3

FIGURE 3 DISK USAGE COMPARISON

The lightest model was the ARIMA with 256 MB RAM and 2.1 MB disk space which made it

unsuitable for an accurate application due to its accuracy trade-Off. The FNN model consistently

performed near average in memory and disk consumption and failed to provide competitive
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approximations in accuracy and latency. The numbers demonstrate the effectiveness of the Edge-

LSTM in cases where both performance and resource efficiency are required, such as on the

edges of networks where resources may be limited.

4. ADAPTIVE RETRAINING AND TEMPORAL LEARNING

To assess the extent of model adaptability as time progressed, a five-day retraining simulation

was conducted and will be discussed and also presented in Table 4 and Figure 4. Edge-LSTM

showed a progressive yet steady reduction in RMSE- 0.35 to 0.31 between Day 1 and Day 5, thus

achieving adaptation to new consumption patterns. The Centralized LSTM, although improved

slightly to 0.38 RMSE level stability, shows the current limitations of the retraining frequency

and no local and immediate update, which is necessary.

TABLE 4: ADAPTABILITY OVER TIME (5-DAY RETRAINING RMSE)

Day Edge-LSTM RMSE Central-LSTM RMSE

1 0.35 0.40

2 0.34 0.39

3 0.33 0.38

4 0.32 0.38

5 0.31 0.38
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FIGURE 4 ADAPTABILITY OVER TIME (RMSE)

This flexibility provides a strategic value to the Edge-LSTM model in the dynamic grid

scenarios, where the load shapes vary day by day and are dependent on the human behavior, the

weather changes, or an intervention by a policy. Figure 4 shows a line graph that concentrates on

the convergence behavior and real-time learning ability of Edge-LSTM.

5. ENERGY CONSUMPTION AND EFFICIENCY

An important factor in edge deployment is power efficiency. As shown in Table 5 and depicted in

Figure 5, Edge-LSTM model only used 2.5 watt-hours per 1000 predictions, a figure that was

significantly lower than the 18.6 watt-hours obtained with the Centralized LSTM. This has been

mainly explained by the overhead of transmission and idle computation necessitated by the

remote cloud systems.

TABLE 5: ENERGY CONSUMPTION

Model Energy Consumed (Wh/1000 predictions) Idle Power Draw (W)

Edge-LSTM 2.5 1.2

Central-LSTM 18.6 7.4
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ARIMA 3.9 1.0

FNN 7.8 2.1

FIGURE 5 IDLE POWER DRAW

With idle scenarios, Edge-LSTM consumed only 1.2 watts compared to centralized systems that

needed approximately 7 watts to perform basic background tasks. ARIMA again showed good

energy efficiency with poor predictive power. This feature of low power demand and high

throughput makes Edge-LSTM a unique energy-efficient AI model to be used in embedded

systems.

6. NETWORK INDEPENDENCE AND ROBUSTNESS

Connection dependency was measured to determine the resiliency of operations when there is a

network problem. This is discussed in table 6 and Figure 6. Edge-LSTM model did not need a

constant connection to the network as it ran completely on-device, and required only 0.5 KB/s of

bandwidth when the model needed periodic metadata updates. This gave it the benefit of high

resilience to network failures, and the ability to survive even in the event of a whole internet

outage.
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TABLE 6: NETWORK DEPENDENCY

Model Network

Required

Avg. Bandwidth Usage

(KB/s)

Resilience to Network

Failure

Edge-LSTM No 0.5 High

Central-LSTM Yes 48.2 Low

FIGURE 6 BANDWIDTH USAGE AND NETWORK DEPENDENCY

On the other hand, the Centralized LSTM was quite dependent on speedy connectivity with an

average network speed use of 48.2 KB/s and proved fatal to network perturbation. These results

show the capabilities of Edge-LSTM to facilitate effective infrastructure deployment in under-

networked or insufficient infrastructure areas.

7. TRAINING AND UPDATE TIMES

Analysis of training time was an important factor to consider the speed with which the models

could be initialised and updated. Table 7 and Figure 7 shows that the Edge-LSTM had required

around 12.5 minutes in the first training to complete compared with the 11.3 minutes required
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with the centralized model. But it was also as lightweight as 3.1 minutes per cycle to update

incrementally, which can be run daily and base the retraining on the edges.

TABLE 7: TRAINING TIME COMPARISON

Model Initial Training Time (min) Incremental Update Time (min)

Edge-LSTM 12.5 3.1

Central-LSTM 11.3 2.7

ARIMA 6.0 –

FNN 8.2 –

FIGURE 7 INCREMENTAL UPDATE TIME

Both the ARIMA and FNN models failed to facilitate incremental retraining and therefore, they

could not serve in adaptive environments. The graph demonstrates the practical viability of the

retraining cycle of Edge-LSTM under the usual device uptime requirements, facilitating bona

fide adaptive edge-AI deployments.

8. MODEL SIZE AND STRUCTURAL COMPLEXITY

Last but not least, the storage and architectural complexity of each of the models is engulfed in

Table 8 and Figure 8. The Edge-LSTM was a small model: 4.2 MB, 23,456 trainable parameters

(it was compressed using quantization and pruning strategies). The Centralized LSTM is slightly
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more complicated (6.3 MB, 28,934 parameters), but does not have compression optimization, and

hence is less pointable to lightweight deployment.

TABLE 8: MODEL SIZE AND COMPLEXITY

Model Model Size (MB) No. of Trainable Parameters Compression Applied

Edge-LSTM 4.2 23,456 Yes

Central-LSTM 6.3 28,934 No

ARIMA 1.2 1,020 No

FNN 3.0 5,678 No

FIGURE 8 TRAINABLE PARAMETERS COMPARISON

ARIMA, being incredibly compact (1.2 MB), was also very weak in terms of representation, since

it assumes very simple statistical relationships. The FNN was at an intermediate size of 3.0 MB

with an intermediate parameter quantity. The combination of these results and the plots confirms

what the diagrams have already shown, that Edge-LSTM is an optimal combination of model

complexity, size and performance in edge computing settings.

DISCUSSION

The emergence of deep learning adjunct with edge computing in making adaptive load

forecasting is a revolutionary way of designing responsive, decentralized, and smart energy

infrastructure. The results of this paper affirm that the success of loading prediction of long
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short-term memory (LSTM) models deployed directly on edge devices does not only bring

higher accuracy, it also provides significant latency improvements, as well as flexibility and

energy efficiency. These findings are consistent with the current trends in the energy analytics

paradigm which is increasingly shifting towards real-time localized intelligence to enable

dynamic grid behavior (Moradzadeh & Khodaei, 2020).

Among the most revealing findings is the high accuracy of the Edge-LSTM model as

against centralized and traditional methods. This fully affirms the hypothesis that the close

distance to data sources enables the forecasting model to be able to pick local nuances of

consumption. Althaher et al. (2021) and Chen et al. (2022) have conducted the similar studies

where context-aware, edge-embedded AI models were highlighted as the one that can enhance

the forecasting accuracy, ideally in cases when heterogeneous consumer behavior is observed.

Under a high level of granularity load profile as presented in residential microgrids or

commercial areas, centralized models have been observed to bring forth generalization on the

pattern with the localized spike or dip being overlooked because of the real world variations such

as occupancy variations, local weather, or device time schedules.

The significant decrease in latency and the improvement in throughput attributed to edge

deployment is another important discovery. Instantaneous forecasting of demand is essential in

the commencement of automated responses by the grid to peak shaving, load shifting, and

dispatch optimization (Kumar et al., 2023). Centralized architecture, which requires an always-on

network connection and server processing, inserts delays that cannot be avoided in order to make

such actions responsive. This low-latency profile of Edge-LSTM shows that it is possible to

operate AI at a grid edge, reflected in the works of Ergun et al. (2020), who state that localized

intelligence is necessary to demonstrate fast demand-response cycles in smart grids.

In systems engineering terms, the considerations of efficiency in resources in terms of

memory, CPU, and energy requirements, as determined by our implementation results suggest

that Edge-LSTM will suit limited resource hardware. Recent optimization in model compression

systems like quantization-aware training and knowledge distillation has been important towards

the deployment of deep learning on edge hardware (Mei et al., 2022). The methods can enable

developers to minimize computational overheads without greatly impairing accuracy, and this is

entirely applicable when it comes to programs that involve smart metering and set-up grid nodes

by making use of Internet of Things. As an illustration, Rahman et al. (2021) showed that
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quantized LSTM networks preserve up to 95 percent of their precision and use 70 percent of the

energy required by full-precision models.

One of the key goals of given research was the adaptivity of the forecasting system, and

the outcome of retraining confirmed its significance. Incremental retraining based on edges

helped the system reduce prediction error over time, in particular, along with changing

consumption patterns. This is in accordance with the idea of life-long learning in edge AI models,

where no fresh model training is involved but the models are incrementally updated based on

newly obtained data (Jiang et al., 2021). This sort of adaptive response guarantees the stability of

forecasting systems in the dynamic real world under which the consumption patterns change

more commonly depending on the social, environmental, and economical forces.

In addition, the decrease in dependency on the network infrastructure has both technical

and policy level benefits. As there are growing concerns regarding cybersecurity, data

sovereignty and privacy laws (e.g., GDPR, CCPA), decentralizing the analytics as edge nodes

allows one to bypass the risks posed by centralized data aggregation (Faruque et al., 2021). As

demonstrated by our results, Edge-LSTM has the flexibility to run in low bandwidth or even a

disconnected setting and thus they can be well adopted to run in rural electrification projects,

isolated microgrids, or even areas where internet infrastructure is poor. The decentralization of

analytics in critical infrastructure is also proposed in the work of Alcaraz et al. (2023) to increase

the level of resilience and privacy protection.

Additionally, this approach has a much wider implication because it affects the

sustainability of grid operations. The edge AI models that improve energy efficiency not only

reduce power consumption themselves, but also lead to a less imbalanced load profile due to the

ability to manage it with timely interventions (Tang et al., 2023). The accuracy of a forecast and

energy optimization run hand in hand with each other- a more accurate forecast results in a more

precise scheduling of the resources as well as lower spinning reserves as well as a smaller

dependency on fossil-based peaking supplies. The study conducted by Ghosh et al. (2022)

validates the fact that the application of AI-based edge computing in the distribution network can

lead to the reduction of grid losses and better integration of renewable sources, which is critical

in terms of its environmental benefit.

It can be also mentioned that such scalability and modularity of the model is also its

advantage in terms of implementation in a wide range of contexts, such as residential smart

homes and industrial parks. Federated load forecasting is the new concept, during which nodes
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engage in local learning and as a whole contribute to the global model with no exchange of raw

data (Qian et al., 2022). Although not applied in this paper, this kind of structures could be

extended further to enhance the privacy, the generalisation and scale of the edge-deployed

forecasting systems.

Nevertheless, there should be certain trade-offs and restrictions. Although edge

computing leads to an increase in responsiveness, there is also an added challenge of hardware

heterogeneity- different devices can be heterogeneous when it comes to computation power and

accordingly affect the performance of the models and model update times. Moreover, the

implementation of the current version will be based on a more or less stable hardware-software

system; a deployment will necessitate sound orchestration and maintenance procedures in

practice. These problems could be resolved by using lightweight orchestration levels, including

Kubernetes at the edge, or embracing AI model lifecycle frameworks, including ONNX and

TensorFlow Model Optimization Toolkit (Patil & Kulkarni, 2021).

Overall, the study supports an initial assumption that the edge-deployed adaptive deep

learning models present a real and better alternative to a conventional model of centralized

forecasting systems. The findings match the international trend of decentralization and

digitalization of power networks as is projected by the International Energy Agency and other

organizations propagating the modernization of grids. With an increasingly dynamic energy mix

driven by distributed renewables, prosumers, electric vehicles and smart buildings, localized,

adaptive, and efficient forecasting solutions are required increasingly. The work does not only

add technical knowledge to the community but also opens the door to future exploration into

federated intelligence, privacy-preserving forecasting, and intelligent edge orchestration within

next-gen smart grids.
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