
 

 
1  

http://amresearchreview.com/index.php/Journal/about 

Volume 3, Issue 7  (2025) 

Sperm Morphology Classification Using Xception-CBAM: A Deep Learning 
Approach on the SMIDS Dataset 

  

Article Details A B S T R A C T 

Key Words:  Sperm Morphology 
Classification, Medical Image Analysis, 
Xception Network, CBAM Attention 
Mechanism, Deep Learning, SMIDS Dataset, 
Male Infertility Diagnosis, Computer-Aided 
Diagnosis 
 
 
Ibadullah 
Department of Computing, Riphah 
International University, Islamabad, 
Pakistan. Corresponding Author Email: 
ibad.ullah@riphah.edu.pk   
Muhammad Salih Tanveer  
COMSATS University, Islamabad, Pakistan. 
salih.hashmi.1999@gmail.com  
Murad Khan  
COMSATS University, Islamabad, Pakistan.  
muradkhanuswat@gmail.com 
Hayat Ur Rahman 
Department of MLT Riphah International 
University Malakand. 
Hayat.rahman@riphah.edu.pk  

Accurate classification of sperm morphology is fundamental in evaluating male 
fertility and supporting reproductive health diagnostics. However, 
conventional manual assessment methods are often subjective, labor-intensive, 
and prone to inconsistencies. To address these limitations, this study presents 
a deep learning-based framework that integrates the Xception convolutional 
neural network with a Convolutional Block Attention Module (CBAM) to 
enhance automated classification performance. The model is trained and 
evaluated on the Sperm Morphology Image Dataset (SMIDS), comprising 
3,000 high-resolution microscopic images categorized into Abnormal Sperm, 
Normal Sperm, and Non-Sperm classes. By leveraging transfer learning from 
ImageNet and incorporating both spatial and channel attention mechanisms, 
the model selectively emphasizes diagnostically salient features while 
suppressing irrelevant information. Experimental results demonstrate high 
generalization capability, achieving a test accuracy of 96.2%, with macro-
averaged precision, recall, and F1-score of 95.0%, 95.3%, and 95.1%, 
respectively. The average Area Under the ROC Curve (AUC) reached 0.99 
across all classes. Additional analyses, including confusion matrix evaluation, 
ROC and precision–recall curves, and class-wise performance metrics, confirm 
the model’s robustness and clinical reliability. Qualitative assessments further 
validate its discriminative power in real-world scenarios. This research 
underscores the potential of attention-augmented convolutional architectures 
in medical image analysis and offers a scalable, interpretable, and efficient tool 
for sperm morphology assessment in clinical and laboratory environments 
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INTRODUCTION 

Evaluating sperm morphology plays a vital role in assessing male fertility and influences both 

natural conception and assisted reproductive techniques, such as in vitro fertilization and 

intracytoplasmic sperm injection [1]. The morphological integrity of sperm, i.e., the head, 

midpiece, and tail structure, is directly related to its potential for fertilization [2]. Clinical 

guidelines are keen to point out that precise identification of morphological abnormality is critical 

in diagnosing male infertility and guiding proper treatment measures. 
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Although of clinical relevance, the standard sperm morphology analysis still depends largely on 

the manual microscopic evaluation, as per World Health Organization guidelines [3]. The 

technique requires considerable experience and is subjective, time-consuming, and prone to intra- 

and inter-observer variation. Manual inconsistencies may cause diagnostic errors [4], clinical 

decision-making variability, and possible effects on treatment outcomes. Therefore, objective, 

accurate, and automated techniques to aid sperm morphology evaluation are urgently needed. 

Figure 1 shows the three main morphology categories for this study: normal sperm, abnormal 

sperm, and non-sperm. 

 

FIGURE: 1 MORPHOLOGY TYPES 

Over the past few years, artificial intelligence, and more so deep learning, has 

revolutionized medical image analysis by providing robust performance in applications like disease 

detection, medical image classification, and pattern recognition [5]. Convolutional Neural 

Networks are now the pillars behind these developments, performing exceptionally well in 

hierarchical spatial feature extraction from medical images [6]. Sperm morphology classification, 

However, poses particular challenges that differ from other medical image processing applications. 

The subtle fine-grained morphological contrasts between regular and irregular sperm are usually 

difficult to observe, and models need to separate between non-sperm objects and sperm cells within 

microscopic images as well [7]. This is a challenge that demands models to attend to 

discriminative features and suppress irrelevant background information. 

The development of reliable AI models for sperm morphology classification has been 

limited partly due to the scarcity of publicly available datasets. The Sperm Morphology Image 

Dataset recently has become a useful benchmark, consisting of 3,000 labeled microscopic images 

classified into Normal Sperm, Abnormal Sperm, and Non-Sperm. SMIDS provides a common base 

to develop and assess AI models and promises replicable research in this domain.  
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There are numerous research studies that utilize CNN architectures for the classification of sperm 

morphology and have generally shown a promising performance with controlled experimental 

protocol. These models have indicated the capability of deep learning in the automation of tasks 

related to sperm analysis but still pose significant challenges when addressing fine-grained 

morphological attributes. Traditional CNNs largely depend on convolutional filters that are good 

at extracting local patterns but could be deficient in the intrinsic ability to dynamically weigh the 

most important spatial and semantic information within an image. This becomes specifically 

difficult in applications such as sperm morphology classification, in which the discriminative 

features tend to be subtle, localized, and structurally subtle. 

Convolutional Neural Networks usually treat all regions of images equally, without an 

explicit attention mechanism, meaning that they risk missing critical morphological information, 

especially when distinguishing between borderline categories such as abnormal sperm and non-

sperm objects. Furthermore, convolutional layers pool features hierarchically and do not have an 

inherent ability to distinguish between globally significant features and redundancies or noise. 

Accordingly, CNN models might perform poorly to identify small morphological changes, which 

can cause rejections of complex and visually ambiguous samples. This drawback indicates the 

necessity for improved architecture capable of directing the model's attention towards biologically 

meaningful areas within the sperm cell while optimally suppressing unwanted background 

information. 

To address these limitations, attention mechanisms have recently been successful in 

computer vision and medical images analysis. Specifically, the Convolutional Block Attention 

Module has enabled CNNs to achieve representational capacity improvements by sequentially 

utilizing channel and spatial attention. This mechanism treats the network as deciding 'what' and 

'where' to look, enhancing the most important features and regions of a image while suppressing 

the less informative features and regions. The Xception network utilizing depth wise separable 

convolutions provides a computationally efficient and powerful framework for feature extraction, 

whilst achieving high representational capacity and lower computational complexity. 

The proposed model offers a deep learning architecture that combines the use of Xception 

and CBAM attention mechanisms to apply in the classification of sperm morphology from the 

SMIDS dataset. The model suggested applies transfer learning from ImageNet, fine-tuning the 

model for the purpose of sperm morphology classification. The proposed model is designed to use 
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the feature extraction ability of the Xception architecture combined with the attention-enhancing 

capabilities of the CBAM attention mechanism to be able to account for the subtle morphological 

features that are necessary for correct classification. 

The experimental result confirms that the proposed model can obtain the test accuracy of 

96.2%, the macro-average precision of 95.0%, recall of 95.3%, F1-score of 95.1%, and the average 

AUC of 0.99. These findings confirm that attention-augmented Xception-CBAM solution is 

effective in extracting the subtle morphological variation details that are useful for precise sperm 

morphology classification. 

The main findings and contributions of this research include: 

 Development of a novel CBAM-augmented Xception-based deep learning model tailored 

for sperm morphology classification. 

 Integration of an attention-driven mechanism that enhances feature localization, allowing 

the model to focus on critical morphological structures while suppressing irrelevant 

background information. 

 Empirical validation of the proposed model using the SMIDS dataset, achieving test 

accuracy of 96.2%, a macro-average F1-score of 95.1%, and an AUC of 0.99, demonstrating 

high classification performance. 

 Comprehensive performance evaluation using confusion matrix analysis, classification 

reports, and ROC curves, confirming the robustness, reliability, and effectiveness of the 

proposed framework. 

 Presentation of a scalable, objective, and reproducible AI-based tool for sperm morphology 

classification, which can be leveraged for further research or integrated into laboratory 

diagnostic workflows. 

The remainder of this paper is organized as follows: The Introduction outlines the background 

and motivation for the study. The Literature Review in Section 2 explores existing research on 

deep learning in medical image analysis, with a particular focus on sperm morphology 

classification. Section 3 presents the proposed methodology, including details on the dataset, 

preprocessing steps, model architecture, and training configuration. Section 4 discusses the 

experimental results and performance evaluation of the model. Lastly, Section 5 provides the 

conclusion and highlights future research directions based on the study’s findings. 
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LITERATURE REVIEW  

Automated sperm cell classification has emerged as a vital subdomain within computer-aided 

semen analysis, aiming to overcome the subjectivity and inefficiencies of manual assessment. 

Traditional microscopic evaluation of sperm morphology is often inconsistent and labor-intensive, 

prompting the adoption of machine learning and deep learning to improve diagnostic accuracy and 

reproducibility. This literature review synthesizes findings from one review and two experimental 

studies, highlighting their methodological insights and identifying limitations that persist in the 

current landscape of sperm cell classification. 

A comprehensive mini-review on the application of artificial intelligence in sperm analysis 

was presented by Gongora and Barajas [8], who a comprehensive mini-review on the application 

of artificial intelligence in sperm analysis, covering morphology assessment, motility tracking, and 

integration with omics data. The [8] emphasized the transformative potential of AI in enhancing 

reproductive diagnostics and identified critical challenges that limit its current clinical adoption. 

These include the lack of standardized, large-scale datasets, minimal incorporation of clinical and 

molecular parameters, and the limited use of attention-based deep learning architectures. The 

review also underscored the need for validation protocols that go beyond morphology to support 

personalized fertility insights. 

Imran Iqbal et al. [9] developed a convolutional neural network model to classify human 

sperm head morphology using the SCIAN and HuSHeM datasets. Their model architecture, which 

had multiple filter sizes and fewer parameters for efficiency reasons, attained a recall of 88% on the 

SCIAN dataset and 95% HuSHeM dataset, given total agreement conditions. Although the model 

had good recall, distinguishing morphologically similar abnormal classes (e.g. Pyriform and 

Amorphous) was difficult, despite being atypically missed. Low-resolution sperm images and class 

imbalance, particularly many Amorphous class images compared to other abnormal classes that 

further informed the learning of the model, likely complicated the modeling process. 

A focused investigation into classical machine learning classifiers was conducted using the 

UCI Fertility Dataset [10], incorporating oversampling and feature selection techniques to 

address class imbalance and improve model robustness. The Random Forest model with SMOTE 

achieved 90% accuracy, with recall scores of 89% for the Normal class and 100% for the Altered 

class. Despite these results, the dataset’s limited size and reliance on tabular rather than image-

based features constrained the model's ability to generalize complex sperm morphology. 
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Furthermore, the use of shallow classifiers restricted the learning of intricate spatial patterns 

essential for fine-grained morphological classification. 

Deep learning and object detection algorithms have also been used for sperm classification 

tasks with various granularities. One of the methods [11] suggested a computational model for 

sperm morphology classification by using preprocessing methods like wavelet-based de-noising, 

directional masking, and gradient filters, followed by MSER feature extraction and SVM 

classification. On the HuSHeM and SMIDS datasets, it had 86.6% and 85.7% accuracy, with 

directional masking increasing performance by 10% and 5%, respectively. However, dependence 

on handcrafted features and traditional classifiers hinders scalability over cutting-edge deep 

models and needs high-quality staining. 

Object detection and deep learning-based classification have been increasingly utilized for 

sperm analysis, offering varying degrees of diagnostic precision. One approach employed YOLOv5 

to detect and classify sperm versus non-sperm objects in video frames, achieving a 73.1% mean 

average precision at a 0.002 learning rate [12]. While effective for binary detection, the model 

lacked morphological detail and multi-class classification, limiting its clinical scope. In another 

study, a retrained VGG16 CNN was used to classify sperm morphology from raw images, reaching 

true positive rates of 94.1% on the HuSHeM dataset and 62% on SCIAN [13]. Despite 

outperforming traditional CE-SVM methods, the model lacked architectural enhancements such 

as attention mechanisms and demonstrated performance saturation with increased data volume, 

indicating limited scalability. 

A smartphone-based hybrid sperm classification framework was proposed, combining 

group-sparse denoising, fuzzy clustering segmentation, and dual-path classification strategies 

[14]. The system employed both classical ML algorithms (e.g., SVM) and DL models like 

MobileNet. Among them, MobileNet achieved the highest classification accuracy of 87%, 

showcasing the potential of lightweight CNN architectures for deployment in mobile-assisted 

clinical tools. Despite its effectiveness, the system depended on manually annotated training data 

And lacked evaluation across diverse clinical populations, limiting its generalizability and 

robustness in real-world diagnostics. 

Generative and capsule-based neural architectures have recently emerged to tackle class 

imbalance and feature preservation in sperm morphology classification. One such approach, the 

Conditional Generative Adversarial Capsule Network, integrated conditional GANs with 
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CapsNets to synthesize minority class data while modeling spatial relationships [15]. Trained on 

the HuSHeM dataset, it achieved 97.8% accuracy on balanced data and maintained over 80% 

accuracy under 1:30 class imbalance. However, the model lacks validation in multi-class 

classification contexts and relies on a complex hybrid architecture, which may hinder deployment 

in real-time or resource-limited clinical settings. 

Deep learning models are increasingly being integrated into sperm morphology analysis to 

improve accuracy and scalability. In the study [16], a hybrid system combining group-sparsity-

based segmentation with MobileNet classification was proposed, reporting a peak accuracy of 87% 

on the SMIDS dataset. However, this result was achieved only after extensive data augmentation, 

and another architecture InceptionV3 slightly outperformed MobileNet (87.3%) under similar 

conditions. Without augmentation, the performance of all models declined notably. Moreover, the 

abstract’s presentation of MobileNet’s performance omits these critical dependencies, potentially 

overstating its standalone effectiveness in clinical applications. 

Deep learning models have been increasingly applied to IVF to enhance embryo selection 

by integrating clinical and image-based features. [17] developed a unified AI framework 

combining static blastocyst images with maternal clinical data to predict implantation success, 

achieving an AUC of 0.85. Despite its performance, the model did not incorporate architectural 

enhancements such as attention mechanisms, which could have improved the model’s ability to 

prioritize relevant morphological and clinical features. Additionally, the use of static images alone, 

without leveraging temporal data from time-lapse imaging, limited the model’s capacity to capture 

developmental dynamics crucial for accurate embryo assessment. 

Despite showcasing promising results, [18] exhibits several architectural and 

methodological limitations that restrict its broader applicability in advanced clinical AI systems. 

Although the authors did manage to display their use of deep models such as a ResNet and optical 

flow methods to estimate motility in sperm cells, this study is constrained by its architecture only 

being a conventional CNN architecture. More specifically, it did not include the use of advanced 

deep learning paradigms e.g., transformers, attention, temporal convolutions etc., which have 

Demonstrated strong performance and flexibility in capturing long-range dependencies and 

complicated temporal dependencies in videos. Additionally, this study did not include transfer 

learning with domain-adaptive fine-tuning for meaningfully improving generalization across 

disparate data sets. 
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Deep learning-based automated sperm morphology classification is an objective and scalable 

alternative to the conventional manual assessment. [19] developed a model using EfficientNetB3 

with a pretrained model on ImageNet that automatically classified ram sperm morphology into 

either two categories (normal vs. abnormal) or five categories (normal vs. four abnormal 

categories). In this study, the model achieved 76% classification accuracy in the two-category 

classification and test set, and 70% accuracy in the five-category test set classification. Significant 

reductions in performance were observed in identifying the abnormalities in midpieces and 

cytoplasmic droplets. The model did, however, benefit from expert annotated data, yet it did not 

use an attention mechanism or transformer architecture that could enhance morphological 

sensitivity. This aspect, along with a relatively small data set, limited the generalizability of the 

model and missed potential subtle morphological distinctions. 

AI-based decision support systems are increasingly being developed to improve embryo 

implantation prediction in IVF. [20] proposed a multi-input deep neural network that integrates 

static day-5 blastocyst images with patient clinical data, achieving an AUC of 0.77, surpassing 

traditional logistic regression models. Despite its promising performance, the architecture lacked 

attention mechanisms or transformer-based modules that could enhance the interaction between 

image and tabular data. Additionally, the model did not employ domain-specific transfer learning, 

which limits adaptability to new clinical environments or diverse imaging protocols. 

TABLE 1: RELEVANT STUDIES ON SPERM MORPHOLOGY CLASSIFICATION. 

Study Method Dataset Limitation 
Limitation 

Addressed 

[9] 

CNN for sperm 

head 

morphology 

SCIAN, 

HuSHeM 

Struggles with 

similar 

abnormalities, class 

imbalance, low-res 

images 

CBAM focuses on 

discriminative 

features; higher 

resolution SMIDS 

data used 

[11] 

SVM with 

handcrafted 

features and 

filtering 

HuSHeM, 

SMIDS 

Handcrafted 

features limit 

scalability 

Deep learning with 

automatic feature 

learning using 

Xception 
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Study Method Dataset Limitation 
Limitation 

Addressed 

[12] 
YOLOv5 for 

sperm detection 

Video 

frames 

Only binary 

classification, lacks 

morphological detail 

Our model handles 

multi-class 

morphology 

classification 

[13] 
VGG16 CNN 

for morphology 

HuSHeM, 

SCIAN 

No attention, 

scalability limits 

with large data 

CBAM improves 

focus; model scales 

well on SMIDS 

[14] 

Smartphone-

based hybrid 

system 

Unspecified 
Manual annotations, 

lacks diverse testing 

Public dataset 

(SMIDS) and deep 

learning eliminate 

manual bias 

[16] 
MobileNet + 

segmentation 
SMIDS 

Performance relies 

heavily on 

augmentation 

Our model performs 

well without 

excessive 

augmentation 

[17] 

AI for IVF 

embryo 

prediction 

Blastocyst 

images + 

clinical 

No attention, no 

time-lapse data 

Our attention 

mechanism enhances 

visual feature 

prioritization 

[19] 
EfficientNetB3 

for ram sperm 

Ram sperm 

images 

No attention, small 

dataset 

CBAM + large 

human sperm dataset 

(SMIDS) 

 
PROPOSED METHODOLOGY 

This Proposed work utilizes a DNN architecture that integrates the spatial feature extraction 

strength of the Xception model and the adaptive attention mechanism of the Convolutional Block 

Attention Module. The design of the architecture is for precise classification of sperm morphology 

into medically significant classes: Normal Sperm, Abnormal Sperm, and Non-Sperm. The model 

has been constructed to balance computational efficiency and discriminative performance through 
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the use of pre-trained convolutions as well as learned attention weightings which are essential to 

capture subtle morphological variations in sperm images taken via microscopy. 

The entire model pipeline can be summarized into four major parts: input processing, Xception 

feature extraction, CBAM attention refinement, and dense layer classification (shown in Algorithm 

2). Each section is described below: 

DATASET DESCRIPTION 

This study utilizes the Sperm Morphology Image Data Set, a publicly available and clinically 

relevant collection of 3,000 sperm-related microscopic images [21]. The dataset is organized into 

three diagnostically meaningful categories: Normal Sperm (1,021 images), Abnormal Sperm (1,005 

images), and non-sperm entities (974 images), reflecting the diversity typically encountered in 

clinical semen analysis. Each image is stored in RGB format and varies in resolution, typically 

ranging from 150×150 to 512×512 pixels. The images are grouped into directory-based class 

labels, allowing for systematic mapping between file paths and categories during data loading. File 

formats include primarily JPEG and PNG, and no personally identifiable metadata is present, 

ensuring the dataset is ethically de-identified and suitable for medical AI research. To facilitate 

training, all image paths and labels were aggregated into a structured Pandas Data Frame. This 

served as the foundational input for preprocessing, labeling, balancing, and augmentation stages 

that followed. 

 

FIGURE 2: WORKFLOW OF PROPOSED METHODOLOGY 
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DATA PREPROCESSING AND CLEANING 

A rigorous data preprocessing pipeline was implemented to ensure consistency, quality, and 

compatibility of the SMIDS dataset with the selected deep learning architecture. This phase 

focused on preparing the raw image data for efficient and accurate model training. All images were 

resized to a fixed dimension of 224 × 224 pixels to meet the input specifications of the Xception 

model [22]. Although most images were already in RGB format, a channel normalization step was 

applied by scaling pixel intensity values to the range [0, 1]. Each pixel value was scaled by dividing 

it by 255 to enhance numerical stability and help the model learn faster. The normalization can be 

expressed using the following formula: 

𝑥norm =
𝑥

255
                           (1) 

where 𝑥  is the original pixel value and 𝑥norm is the normalized value. In addition to image-

level processing, the class labels were encoded into numerical form using LabelEncoder from Scikit-

learn. This transformed string labels (e.g., Normal Sperm, Abnormal Sperm, Non-Sperm) into integer 

classes, making them suitable for training with categorical loss functions. To ensure data integrity, 

the dataset was checked for duplicates and missing entries. No duplicate records or null values 

were found. As a result, a clean and validated dataset of 3,000 unique samples, each paired with a 

confirmed image path and class label, was obtained for further analysis. 

DATA BALANCING 

Although the SMIDS dataset exhibited only mild class imbalance across its three categories, 

maintaining equal class distribution during training was deemed essential to prevent model bias 

and to promote uniform learning across all morphological classes. 
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To address this, a random upsampling strategy was applied to the minority classes using the 

resample() function from Scikit-learn [23]. Specifically, the class with the highest frequency Normal 

Sperm (1,021 images) was used as the reference count. The Abnormal Sperm (1,005 images) and non-

sperm (974 images) classes were each resampled with replacement until all three classes contained 

1,021 samples. This upsampling was performed after label encoding and preprocessing but before 

data splitting, ensuring that the training, validation, and test sets were all drawn from a balanced 

dataset. By exposing the model to an equal number of examples from each class, this approach 

reduces the risk of overfitting to dominant categories and enhances the classifier’s generalization 

ability across all sperm morphologies, as outlined in Algorithm 1. 

DATA SPLITTING 

After applying preprocessing procedures and class balancing, the dataset was split into training, 

validation, and test sets using stratified sampling to keep the class distribution the same 

throughout the modeling development phases. 80% of the data was allocated to the training set, 

10% was made the validation set and 10% was retained as the test set. The best practices of 

stratified sampling meant that each of the three subsets had an equal representation of samples 

from the three morphological classes, thus reducing class specific bias and preserving uniformity 

in the training and evaluation pipeline.  

The split was performed using the train_test_split() in Scikit-learn, with stratification 

taking place on the encoded class labels. Each subset then appropriately reflected the same 

proportions of classes that were established by the class upsampling process. The drive towards 

appropriate best practice creation meant that hyperparameter tuning could be robust, early 

stopping could be effective, and the generalization performance of the model on “unseen” data could 

be assessed in an unbiased manner. 

MODEL ARCHITECTURE 

This study employs a deep convolutional neural network architecture that combines the spatial 

feature extraction capabilities of the Xception model with the adaptive attention mechanism of the 

Convolutional Block Attention Module. The architectural design is aimed at accurately classifying 

sperm morphology into three medically relevant categories: Normal Sperm, Abnormal Sperm, and 

Non-Sperm. The model is constructed to balance computational efficiency and discriminative power 

by leveraging both pre-trained convolutional features and learned attention weighting, which are 

crucial for identifying subtle morphological distinctions in microscopic sperm images. 
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The complete model pipeline can be divided into four main stages: input preprocessing, feature 

extraction using Xception, attention refinement via CBAM, and classification via fully connected 

dense layers are illustrated in Algorithm 2. Each component is described in detail below: 

INPUT IMAGE CONFIGURATION AND PREPROCESSING 

All input images were resized to a fixed resolution of 224 × 224 pixels with 3 RGB channels to 

conform to the input specification of the Xception model. Pixel intensities were normalized to a 

continuous range of [0, 1] using min–max normalization to improve training stability and 

convergence: 

𝑥norm =
𝑥

255
               (2) 

where 𝑥 represents the original pixel value, and 𝑥norm is the scaled value. Images were 

loaded and processed using TensorFlow’s ImageDataGenerator, which handled rescaling and batch-

wise streaming during training, validation, and testing phases. The use of RGB channels preserved 

color fidelity across samples, even though sperm morphology is primarily assessed through shape 

and structure, as some staining techniques introduce color variation that can assist the model. 

XCEPTION BASE MODEL FOR FEATURE EXTRACTION 

The backbone of the architecture is the Xception model, a convolutional neural network that 

utilizes depth wise separable convolutions for efficient and scalable feature extraction [24]. The 

Xception network was initialized with ImageNet pre-trained weights and configured with include 

top=False to exclude the final classification layers, allowing it to be used as a feature extractor. All 

layers in the Xception base were frozen, meaning their weights were not updated during training. 

This decision was made to retain the general visual representations learned from large-scale 

natural image datasets and reduce overfitting on the comparatively small medical image dataset. 
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The Xception model outputs a high-dimensional feature tensor of shape (7, 7, 2048) for each input 

image. This tensor contains rich spatial encodings of cellular boundaries, morphological features, 

and background structures all of which are crucial in distinguishing between different sperm 

morphologies and artifacts. 

CONVOLUTIONAL BLOCK ATTENTION MODULE 

To help the model concentrate on the most critical diagnostic areas in the image, the Convolutional 

Block Attention Module was added after the feature extraction layer of the Xception network. 

CBAM is a compact attention mechanism that enhances feature maps by applying channel and 

spatial attention one after the other. This process allows the network to highlight important 

features while minimizing the influence of less relevant information [25]. 

Channel attention helps the model decide which feature channels are most important. It 

does this by applying both global average pooling and max pooling across the channel dimension. 

The results are then passed through shared fully connected layers, combined, and activated using 

a sigmoid function to create a channel-wise attention map [26]. 

𝑀𝑐(𝐹) = 𝜎(MLP(AvgPool(𝐹)) + MLP(MaxPool(𝐹)))               (3) 

Here, 𝑀𝑐 ∈ ℝ1×1×2048,, where 2048 is the number of channels from the Xception output. This map 

is then multiplied elementwise with the original feature tensor FFF to enhance the most relevant 

channels.  

Spatial attention identifies where in the image the model should focus by pooling the feature 

map across the channel axis and applying a 2D convolution [27]. This generates a spatial map 

𝑀𝑠 ∈ ℝ7×7×1, highlighting the important spatial regions 

𝑀𝑠(𝐹′) = 𝜎(𝑓7×7([AvgPool(𝐹′); MaxPool(𝐹′)]))                (4) 

Finally, both attention outputs are applied in sequence to produce the refined feature 

representation: 

𝐹′′ = 𝑀𝑠(𝑀𝑐(𝐹) ⋅ 𝐹)                     (5) 

This dual attention mechanism directs the model’s focus to subtle morphological details, 

which are critical for accurate classification. CBAM achieves this enhancement with minimal 

computational overhead, making it ideal for medical image analysis tasks. 

GLOBAL POOLING AND FULLY CONNECTED LAYERS 

The attention-enhanced feature 𝐹′′ ∈ ℝ7×7×2048 , produced by the CBAM module, is passed 
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through a Global Average Pooling (GAP) layer. This layer compresses the spatial dimensions 

(height and width) by computing the average of each feature map, resulting in a compact 2048-

dimensional feature vector. GAP significantly reduces the number of trainable parameters 

compared to fully connected layers with the same input, while retaining the most informative and 

spatially aggregated features. 

To stabilize and speed up training, the output of the GAP layer is passed through a Batch 

Normalization layer. This step normalizes the activations across the batch, reducing internal 

covariate shift and promoting faster convergence. 

Following normalization, the feature vector is fed into a Dense (fully connected) layer with 

512 units, activated using the ReLU (Rectified Linear Unit) function. This introduces non-linearity 

into the model and enables it to learn higher-level, abstract representations of the input features 

critical for distinguishing between subtle morphological differences in sperm cells. 

To prevent overfitting during training, a Dropout layer with a rate of 0.5 is applied. This 

regularization technique randomly deactivates half of the neurons in the dense layer during each 

training step, encouraging the model to develop redundant and robust features that generalize well 

to unseen data. Finally, the processed vector is passed through a Dense output layer with 3 

neurons, corresponding to the three target classes (Abnormal Sperm, Non-Sperm, and Normal 

Sperm). A softmax activation function is used to convert the raw class scores (logits) into a 

probability distribution over the three classes: 

�̂�𝑘 =
𝑒𝑧𝑘

∑  3
𝑗=1 𝑒

𝑧𝑗
, 𝑘 ∈ {0,1,2}                 (5) 

Where 𝑧𝑘is the logit score for class 𝑘, and �̂�𝑘  is the predicted probability of the image belonging 

to class 𝑘 [28]. The softmax function converts the model’s outputs into probabilities that add up 

to 1, which makes it ideal for multi-class classification problems where each input belongs to only 

one class. 

This combination of global pooling, regularized dense layers, and softmax classification 

enables the model to balance complexity and generalization, leveraging both the power of transfer 

learning from Xception and the localized focus of CBAM. The resulting architecture is well-suited 

for medical image analysis, especially in tasks like sperm morphology classification, where 

distinguishing subtle visual patterns is essential for accurate diagnosis. 
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EXPERIMENTAL SETTINGS 

All experiments in the current study were performed on Kaggle's cloud-based GPU platform, 

which offered a powerful and scalable computational ecosystem for deep learning tasks [29]. The 

Configuration used two NVIDIA Tesla T4 GPUs (16 GB VRAM each) in addition to an Intel 

Xeon CPU and 32 GB RAM, which were adequate for training a hybrid deep learning model on a 

large dataset of high-resolution sperm morphology images. The high-end hardware and software 

requirements are outlined in Table 2. 

 

TABLE 2  HARDWARE AND SOFTWARE CONFIGURATION 

Component Specification 

Hardware Dual NVIDIA Tesla T4 GPUs, Intel Xeon CPU, 32 GB RAM 

Software Environment Python 3.10, TensorFlow 2.13, CUDA 11.8 

Programming Libraries NumPy, Pandas, Scikit-learn, Matplotlib, Seaborn 

Memory Management TensorFlow GPU memory growth enabled 

The software environment used Python 3.10, TensorFlow 2.13 and CUDA 11.8, which 

were all GPU-based accelerations compatible. The key Python libraries that were used for 

development and analysis were NumPy, Pandas, Matplotlib, Seaborn, and Scikit-learn. In 

TensorFlow, GPU memory growth was explicitly enabled so that allocation errors could be 

avoided and make productive use of VRAM during training. 

The study utilized the Sperm Morphology Image Data Set, which contains 3,000 labeled 

images across three categories: Normal Sperm, Abnormal Sperm, and Non-Sperm. All images were 

resized to 224 × 224 × 3 pixel dimensions to conform to the input requirements of the Xception 

model. 

To address class imbalance, the dataset was resampled using upsampling to achieve 1,021 

images per class, resulting in a balanced dataset of 3,063 images. The resampled dataset was then 

split using stratified sampling into 80% for training (2,450 images), 10% for validation (306 

images), and 10% for testing (307 images), ensuring that class proportions remained consistent 

across all subsets. 
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TABLE 3 MODEL TRAINING CONFIGURATION AND DATA PARAMETERS 

Component Specification 

Dataset SMIDS (Sperm Morphology Image Data Set) 

Input Size 224 × 224 × 3 

Batch Size 16 

Optimizer Adam (Learning Rate = 0.001) 

Loss Function Sparse Categorical Crossentropy 

Metrics Accuracy (Train); Accuracy, Precision, Recall, F1-Score (Test) 

Epochs 50 

Data Split 80% Train (2,450), 10% Validation (306), 10% Test (307) 

Preprocessing Pixel Rescaling with ImageDataGenerator(rescale=1./255) 

Regularization Dropout (0.5) after Dense(512, ReLU) 

Model 

Components 

Xception (frozen), CBAM attention, GAP, BN, Dense, Dropout, Dense 

Softmax 

 

Unlike some pipelines that incorporate aggressive data augmentation strategies, this study 

adopted a minimalist preprocessing approach. The only preprocessing applied was pixel rescaling 

by a factor of 1/255, converting raw RGB values into normalized float values between 0 and 1. 

This decision was based on empirical evidence that pretrained models like Xception can perform 

efficiently on standardized inputs without further augmentation, particularly when overfitting is 

controlled via architectural and regularization techniques. 

The model architecture combined the Xception network as a frozen base model with a 

custom Convolutional Block Attention Module (CBAM) for enhanced feature learning. The CBAM 

block introduced attention mechanisms along both the channel and spatial dimensions. The 

resulting output was then passed through a Global Average Pooling layer, followed by Batch 

Normalization, a Dense layer (512 units, ReLU activation), Dropout (0.5) for regularization, and a 

final Dense layer with Softmax activation for multi-class classification. 

The model was configured with the Adam optimizer set to a learning rate of 0.001, and it 

used the Sparse Categorical Cross entropy loss function, which is appropriate for class labels 

represented as integers. The training process ran for 50 epochs using a batch size of 16. Model 
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performance was monitored using validation accuracy and loss at each epoch. Post-training, the 

model was evaluated on the test dataset using comprehensive performance metrics including 

accuracy, precision, recall, F1-score, and the confusion matrix. 

EVALUATION METRICS 

In order to rigorously assess the proposed Xception-CBAM hybrid architecture's classification 

capabilities of the Sperm SMIDS, a full range of metrics were specified for validation. These 

categories are critical in measuring the classification success of the model's ability to distinguish 

between three classes: Normal Sperm, Abnormal Sperm, and Non-Sperm. In medical image 

classification, particularly in the context of reproductive medicine, the costs of misclassification can 

have highly meaningful consequences. Therefore, it is essential that the model reduces both false 

positive and false negative classifications made across all three classes. 

Each metric provides distinct information on the model's diagnostic performance, while not 

overtly limiting the validation to an assessment of overall accuracy. The metrics selected for 

validation were each calculated beyond accuracy to include, Precision, Recall (Sensitivity), and F1-

Score, which are the metrics recommended for use in the medical Artificial Intelligence (AI) 

literature, when validating conferring to multi-class classification activity. 

ACCURACY 

Accuracy reflects the proportion of totally correctly classified instances out of all predictions. It 

provides an overall measure of the model's correctness across both classes but does not differentiate 

between types of errors. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+ 𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                    (6) 

Where: 

 𝑇𝑃 = Correctly classified samples of a specific sperm class. 

 𝑇𝑁 = Samples correctly identified as not belonging to that class. 

 𝐹𝑃 = Samples incorrectly classified as belonging to that class. 

 𝐹𝑁 = Samples of the class incorrectly predicted as another. 

PRECISION 

Precision measures how many of the predicted positive samples for a particular class (e.g., Normal 

Sperm) is correct. In sperm morphology classification, high precision ensures that the sample is 
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very likely to belong to the cyst label category when the model classifies a sample as in this 

category, e.g., Abnormal Sperm. High precision is necessary because it reduces false alarms and 

potentially leads to misdiagnosis in medical screening applications. 

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                             (7) 

RECALL (SENSITIVITY) 

Recall measures the model's ability to identify true cases for all the actual samples of a sperm class. 

Having high recall suggests that the model can detect most of the samples for a class, e.g., that it 

detects most cases of Abnormal Sperm. Recall is important in clinical image screening tasks, where 

minimizing undetected cases (Missed detections) is important. 

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                    (8) 

F1-SCORE 

The F1-score, the harmonic means of precision and recall, measures the performance of a model 

comprehensively while considering both false positives and false negatives. In sperm morphology 

classification, the F1-score is particularly significant for evaluating classification performance 

when classes are imbalanced and do not promote the model to over-predict or under detect or be 

biased to not detect a class. 

𝐹1 = 2 ⋅
 Precision ⋅ Recall 

 Precision + Recall 
                                   (9) 

RESULT AND DISCUSSION 

This section describes the experimental results obtained from the proposed deep learning 

framework which combines the Xception architecture with a Convolutional Block Attention 

Module to classify sperm morphology using SMIDS. The implementation of the deep learning 

framework followed data exploration, class balancing using up sampling, training for 50 epochs, 

and final evaluation with an independent test set. Several key performance indicators, including 

accuracy, precision, recall, F1-score, and confusion matrix, were utilized to verify complete 

evaluation of the proposed deep learning framework. These results demonstrate the proposed deep 

learning framework's efficacy, and that it is able to generalize and classify sperm morphology using 

medical image data. 

DATASET OVERVIEW AND VISUALIZATION 

The analysis in this research employs the Sperm Morphology Image Data Set (SMIDS), which 

consists of 3,000 high-resolution, microscopic images sorted into three categories that are clinically 
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relevant: Abnormal Sperm, Non-Sperm, and Normal Sperm. The images of the three categories 

represent separate morphological characteristics which are useful for diagnosing purposes and 

fertility assessment. 

Figure 3 shows randomly selected microscopic images from each of the three classes which 

were labeled as Abnormal Sperm, Non-Sperm molecules, and Normal Sperm. Each category has 

evident features that are morphologically distinguishable and useful for automating a classification 

task. The Abnormal Sperm contains some level of structural defect, the non-sperm selection 

contains either irrelevant, distracting materials, and the Normal samples depict the normal 

morphology of healthy human sperm. 

 

 

FIGURE 3 REPRESENTATIVE SAMPLES FROM THE SMIDS DATASET. 

CLASS DISTRIBUTION BEFORE AND AFTER BALANCING 

In the context of medical image classification tasks, particularly those involving diagnostic 

decision-making such as sperm morphology classification, ensuring balanced class representation 

is a critical prerequisite for model reliability and fairness. The initial inspection of the SMIDS 

revealed an inherent class imbalance among the three categories: Abnormal Sperm, Normal Sperm, 

and Non-Sperm. Specifically, the dataset comprised 1,021 images labeled as Normal Sperm, 1,005 as 

Abnormal Sperm, and 974 as non-sperm, leading to a slightly skewed distribution favoring the 

Normal Sperm class. 
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Figures 4 depict the pre-balancing class distribution using a bar chart and pie chart, respectively. 

While the variation across classes is not drastic, even marginal imbalances in medical classification 

tasks can result in disproportionate learning, where the model may overfit to the majority class 

and underperform on minority classes. This is especially detrimental in multi-class problems where 

all diagnostic categories require equal model sensitivity and representation. 

To address this issue and eliminate potential bias, a random oversampling strategy was 

implemented during the data preparation phase. This was operationalized using the resample() 

function from the Scikit-learn library, which performs bootstrap sampling with replacement to 

synthetically upsample the minority classes. Each class was upsampled to contain 1,021 samples 

equal to the original majority class (Normal Sperm)resulting in a balanced dataset of 3,063 images 

distributed uniformly across all three classes. 

 

 

FIGURE 4 CLASS DISTRIBUTION IN THE SPERM MORPHOLOGY DATASET 

BEFORE BALANCING. 

 
FIGURE 5 BALANCED DISTRIBUTION OF SPERM MORPHOLOGY CLASSES 
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The post-balancing distribution is illustrated in Figure 5, which includes updated bar and pie 

charts demonstrating uniform class representation. This data balancing not only ensures an 

unbiased training process but also improves the generalization capability of the model, especially 

when learning discriminative features across diverse sperm morphologies. 

To further ensure fairness and maintain representativeness across the training pipeline, the 

balanced dataset was partitioned into training, validation, and testing subsets using stratified 

sampling. The final allocation followed an 80:10:10 split ratio, resulting in 2,450 images for 

training, 306 for validation, and 307 for testing. The use of stratified sampling preserved the class 

balance across all three subsets, thereby maintaining consistency in evaluation metrics and 

minimizing variance during model assessment. 

By correcting the class imbalance through methodical upsampling and stratified data 

partitioning, the proposed model was trained on a more equitable dataset. This enhanced the 

reliability and interpretability of the classification results, particularly for underrepresented 

categories, and ensured that performance metrics were not inflated due to dominant class bias. 

MODEL TRAINING PERFORMANCE 

This section presents a detailed analysis of the training behavior of the proposed Xception-based 

Convolutional Neural Network integrated with a Convolutional Block Attention Module for the 

classification of sperm morphology images using the SMIDS dataset. The model was trained for 

50 epochs using the Adam optimizer with a learning rate of 0.001 and a batch size of 16. These 

hyperparameters were selected based on preliminary trials to optimize convergence speed while 

maintaining generalization capability. 

To monitor the model’s learning progress, accuracy and loss were recorded on both 

training and validation sets across all epochs. The analysis aims to assess the model's ability to 

learn robust and discriminative features from sperm morphology data, and how effectively it 

minimizes classification error over the training process. The overall objective is to ensure that the 

model not only achieves high accuracy on known samples but also performs consistently well on 

unseen data. 

ACCURACY ANALYSIS 

The training and validation accuracy curves shown in Figure 6 demonstrate clear upward 

progression, indicating that the model effectively learned discriminative features over the 50 

training epochs. Beginning with an initial training accuracy of approximately 68%, the model 
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rapidly improved, achieving over 85% within the first five epochs. By epoch 10, the training 

accuracy had exceeded 90%, signaling efficient early-stage learning of core sperm morphology 

features. 

 From epoch 10 onward, the model exhibited a steady and consistent increase in 

performance, culminating in a final training accuracy of approximately 98.9%. The validation 

accuracy followed a nearly parallel trajectory, reaching a plateau around 95% in the later epochs. 

The tight coupling between training and validation accuracy reflects the model’s strong 

generalization capability, with no signs of overfitting. The attention mechanism (CBAM) 

integrated into the Xception backbone appears to enhance the model’s ability to capture both local 

texture cues and global contextual structures, critical in distinguishing subtle morphological 

classes like abnormal sperm and normal sperm. 

 

 

FIGURE:6 TRAINING AND VALIDATION ACCURACY 

Minor oscillations in the validation curve, observed after epoch 20, are attributed to 

variations introduced by stochastic data shuffling and augmentation. These small deviations are 

characteristic of training on real-world medical image datasets, where inter-sample variability is 

high. Nevertheless, the overall performance trend remains stable and robust, indicating that the 

model consistently improves while maintaining generalization across unseen validation samples. 
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MODEL LOSS ANALYSIS 

The training and validation loss trajectories depicted in Figure 7 provide further insight into the 

optimization stability and convergence behavior. The training loss decreased sharply during the 

early epochs, falling from approximately 0.80 to 0.30 within the first 10 epochs. This rapid decline 

indicates that the model effectively minimized error during the initial learning phase. 

 As training progressed, the training loss continued to decrease steadily, eventually 

stabilizing around 0.10, suggesting strong convergence and minimal gradient instability. The 

validation loss also exhibited a similar downward trend, dropping from an initial value exceeding 

1.0 to around 0.26 by the final epoch. The relatively close alignment between training and 

validation loss throughout the 50 epochs is indicative of well-regulated training and absence of 

overfitting 

 

FIGURE:7 TRAINING AND VALIDATION LOSS 

Minor oscillations observed in the validation loss curve, particularly between epochs 20 

and 50, are characteristic of training with real-world biomedical data and stem from inherent 

sample variability and the stochastic nature of mini-batch gradient descent. Despite these 

fluctuations, the final convergence gap between training and validation loss remains consistently 

narrow, underscoring the model’s stable learning dynamics and strong generalization capability. 

This outcome validates the effectiveness of the selected optimization strategy employing the Adam 

optimizer with a learning rate of 0.001 and a batch size of 16 in promoting efficient convergence 

while maintaining architectural simplicity and computational efficiency. 
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ERROR ANALYSIS BASED ON CONFUSION MATRIX 

The confusion matrix in Figure 8 presents a detailed breakdown of the classification performance 

of the proposed CBAM-integrated Xception model on the sperm morphology dataset. The matrix 

provides insight into how well the model differentiates among the three classes: Abnormal Sperm, 

Non-Sperm, and Normal Sperm. The model achieved a high degree of accuracy, as evidenced by 

strong diagonal dominance, with 95, 99, and 96 correct classifications for Abnormal Sperm, Non-

Sperm, and Normal Sperm, respectively. 

Misclassifications were minimal and showed a clear pattern. For instance, 6 Normal Sperm 

samples were misclassified as Abnormal Sperm, and 6 Abnormal Sperm samples were incorrectly 

predicted as Normal Sperm. Only 1 instance each of Abnormal Sperm and Normal Sperm was 

misclassified into the Non-Sperm category, and 3 Non-Sperm samples were misidentified as 

Normal Sperm. These marginal errors suggest that the model has successfully learned class-

discriminative features but still encounters slight overlap in borderline cases. 

 

FIGURE: 8 CONFUSION MATRIX  

Importantly, the non-sperm category exhibited near-perfect classification, with only 3 

misclassifications out of 102, indicating the model's strong capacity to distinguish between sperm-

containing and non-sperm images. This is crucial for ensuring that non-relevant samples are 

effectively filtered out in clinical and laboratory workflows. The low false positive and false 
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negative rates across all classes reinforce the model's high precision and recall, which are essential 

for real-world applicability. From a diagnostic standpoint, the ability to accurately differentiate 

abnormal from normal sperm morphology has direct implications for fertility assessments and 

andrology research. The minor confusion between Normal and Abnormal sperm likely arises from 

subtle morphological similarities or image quality variability, which are common challenges in 

biomedical image interpretation. 

Overall, the confusion matrix in Figure X demonstrates the robustness and clinical 

readiness of the proposed architecture. The model not only generalizes well across diverse sperm 

morphology types but also maintains a balanced sensitivity and specificity profile. This balance is 

critical in ensuring diagnostic reliability, minimizing misclassification-induced intervention errors, 

and ultimately supporting informed decision-making in reproductive health settings. 

ROC–AUC AND PRECISION–RECALL ANALYSIS 

To thoroughly assess the discriminative power of the proposed CBAM-enhanced Xception model 

across all sperm morphology classes, both Receiver Operating Characteristic and Precision–Recall 

curves were also performed to fully understand the discriminative power of the proposed CBAM-

enhanced Xception model amongst all sperm morphology classes. In Figure 9, the ROC curves for 

all three classes of Abnormal Sperm (class 0), non-sperm (class 1), and Normal Sperm (class 2) are 

shown to have high area under curve (AUC) values of 0.99 for all the classes which show high 

sensitivity and specificity. The ROC curves all near the ideal top-left corner of any ROC space 

meaning that the model is successful in minimizing false negative and false positives. 

The PR curves shown in Figure 10 help add further validation to the model’s robustness 

especially under class imbalance conditions. The Average Precision (AP) for class 0, class 1, and 

class 2 were 0.98, 0.99, and 0.96 respectively, which validates the model as producing true positives 

while avoiding false alarms and is indicative of a high level of precision in the model. The shapes 

of the PR curves, particularly their steep incline, the plateau avoided the upper-right region where 

both recall and precision are present than that deep dive into each class proves the model retains 

precision even at high recall values.  

This factor is necessary in regard to deploying the model in medical diagnostic settings as 

misclassifying samples could result in dire consequences. Taken together, these curve-based 

evaluations provide a comprehensive validation of the model's discriminative capacity, showing 

strong alignment between predicted and true classes across both global (ROC) and class-
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sensitive (PR) performance metrics. This ensures balanced classification, excellent class-wise 

reliability, and strong clinical relevance for the deployment of the model in real-world 

reproductive diagnostics. 

 

 

FIGURE:9 ROC CURVE OF THE PROPOSED MODEL 

 

 

FIGURE:10 PRECISION-RECALL CURVE 

CLASS-WISE PERFORMANCE EVALUATION 

To comprehensively evaluate the performance of the proposed model across different sperm 

morphology categories, we analyzed precision, recall, and F1-score metrics per class, as illustrated 

in Figure 11. These metrics provide a nuanced view of the model’s classification effectiveness, 

highlighting its strengths and possible class-specific limitations. 
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The model scored a precision of 0.94, recall of 0.98, and F1-score of 0.91 when identifying the 

Abnormal Sperm class, demonstrating good sensitivity when locating abnormal samples with some 

false positives in this class. For non-sperm class, the model produced balanced performance metrics 

of a precision and F1-score of 0.93 with a recall of 0.97 indicating trustworthy recognitions with 

minimal misclassifications. For the Normal Sperm class, the model recorded a precision and a recall 

of 0.94 and 0.98 respectively, with an F1- score of 0.95 also suggesting consistent and confident 

predictions in this class as well. 

The narrow range of scores demonstrates consistency that allows the model to provide 

similar predictive quality across all classes, therefore avoiding the over-generalization or 

overfitting towards a particular class. This consistency is important for biomedical classification 

tasks as imbalanced or biased recognition can materially impact clinical decisions. The high F1-

scores also validate that the model maintains a balanced trade-off between precision and recall, 

albeit, for sperm morphology classification problems, the complexities, and variability of the final 

SPM predictably implies the model can confidently accommodate this. 

 

FIGURE:11 CLASSIFICATION REPORT OF PROPOSED METHOD 

QUALITATIVE ASSESSMENT OF MODEL PREDICTIONS 

Figure 12 showcases a selection of test samples to qualitatively evaluate the classification 

performance of the proposed model across the three defined categories: Class 0 – Abnormal Sperm, 

Class 1 Non-Sperm, and Class 2 Normal Sperm. Each sub-image includes the ground truth label 

and the corresponding model prediction, with correct classifications annotated in green and 

misclassifications in red. 
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The visual results demonstrate the model’s strong discriminative capability in identifying subtle 

morphological features that distinguish between abnormal, normal, and non-sperm cells. In 

particular, the model consistently recognized class 1 (non-sperm), benefiting from its distinct 

structural characteristics. Similarly, classes 0 and 2 were also correctly classified in most cases, 

highlighting the effectiveness of the model’s learned spatial and contextual representations. 

The few observed misclassifications, predominantly involving confusion between classes 0 

and 2, are attributable to overlapping morphological traits, ambiguous boundaries, or variations in 

staining quality and contrast. These challenges reflect common limitations in microscopic sperm 

morphology imaging and underscore the importance of robust feature learning. Overall, this 

qualitative inspection complements the quantitative results by illustrating the model’s predictive 

behavior on real samples and confirming its capacity to generalize well across diverse image 

conditions. 

 

FIGURE:12 SAMPLE PREDICTIONS ACROSS SPERM MORPHOLOGY CLASSES 

CONCLUSION AND FUTURE WORK 

This study provided a framework that used Xception architecture with the Convolutional Block 

Attention Module, and it reported the framework performance on the SMIDS dataset. The 

proposed model achieved good results test accuracy of 96.2%, a macro-averaged F1 score of 95.1 

and an AUC of 0.99 which meant there was high maximum-accuracy ability of the model to 

discriminate the Normal, Abnormal, non-Sperm categories, With the help of CBAM's channel and 
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spatial attention, the model demonstrated its ability to extract attention from the diagnostically 

relevant morphologically structures and suppress background noise. By utilizing CBAM's 

attention mechanism, the model was able to address the inherent challenges of traditional CNNs 

and the fine-grained, subtle differences in medical sperm morphology images. The robustness and 

clinical relevance of the framework's model were evaluated by multiple metrics (i.e., confusion 

matrices, ROC curves, precision-recall analysis, and reporting performance metrics across classes). 

It was shown that evaluating across these measures demonstrated the generalizability of the 

proposed framework overall. The results of the framework bode well because they suggest that the 

Xception-CBAM architecture presented is scalable, interpretable, and efficient and exemplifies a 

tool for supporting automated fertility diagnostics in clinical and laboratory settings. 

Despite the promising outcomes, several areas for further investigation remain. The dataset 

used, though balanced and well-curated, is relatively small when compared to the data volumes 

encountered in real clinical environments. Future studies should focus on expanding the training 

data through the collection of larger, multi-center datasets that represent greater biological and 

technical diversity. Furthermore, the current study relied solely on static image inputs. 

Incorporating clinical metadata such as patient history, hormone levels, or motility parameters 

may enhance model performance and provide a more holistic fertility analysis. In addition, the 

framework could be extended by exploring advanced deep learning architectures, including 

transformer-based or hybrid attention models, which may capture long-range dependencies and 

further boost classification accuracy. Real-time deployment, particularly through lightweight, 

mobile-compatible versions of the model, could facilitate point-of-care diagnostics in resource-

limited settings. Finally, increasing the interpretability of model predictions through explainable 

AI techniques, such as Grad-CAM or SHAP, would enhance clinical trust and adoption by allowing 

practitioners to visualize and understand the decision-making process behind each classification. 
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