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Text preprocessing (TP) has historically been a critical phase in Natural Language
Processing (NLP) pipelines, aimed at transforming raw text into a cleaner, more
manageable format for machine consumption. With the advent of sophisticated
pre-trained Transformer models, the perceived necessity of explicit TP has been
debated. This paper offers a comprehensive review of existing literature
concerning text preprocessing, with a specific focus on its application and impact
within Urdu Natural Language Processing. We delve into the unique linguistic
challenges posed by Urdu, such as its rich morphology and Nastaliq script, and
survey various preprocessing techniques including script normalization, stop word
removal, and stemming/lemmatization. Through an extensive examination of past
studies, we analyze how these techniques have influenced the performance of both
traditional machine learning classifiers and modern deep learning architectures,
including Transformer models, in Urdu text classification and other NLP tasks.
This review synthesizes key findings from the literature, highlighting the
enduring relevance of tailored TP strategies for optimizing Urdu NLP applications
and identifying critical gaps for future research.
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INTRODUCTION

Natural Language Processing (NLP) has become an indispensable field, driving advancements in

diverse applications from information retrieval to machine translation and sentiment analysis [1].

At the core of many successful NLP systems lies text preprocessing (TP), a foundational step

designed to refine raw textual data into a more structured and informative representation

suitable for computational analysis [2, 3]. This preparatory phase typically involves a series of

operations such as tokenization, noise reduction, normalization, and linguistic simplification, all

of which aim to enhance the efficiency and accuracy of subsequent NLP tasks [4]. For languages

with complex linguistic structures, such as Urdu, the importance of meticulous TP is often

amplified, as it addresses inherent challenges that can significantly impede model performance

[139, 140].

Historically, the impact of TP on machine learning models, particularly traditional

classifiers, has been well-documented. Studies have consistently shown that effective

preprocessing can lead to substantial improvements in accuracy, reduce dimensionality, and

mitigate issues like data sparsity, thereby making models more robust and efficient [7, 8, 142].

However, the landscape of NLP has been dramatically reshaped by the emergence of powerful

pre-trained language models, notably those built upon the Transformer architecture [11].

Models like BERT, RoBERTa, XLNet, and ELECTRA, trained on vast quantities of text, have

demonstrated remarkable capabilities in capturing complex linguistic patterns and contextual

nuances across a multitude of languages [116]. This paradigm shift has led to a growing

discourse regarding the continued relevance of explicit TP, with some suggesting that these

advanced models are inherently robust enough to handle raw text, rendering traditional

preprocessing steps redundant or even detrimental [131].

This paper critically examines this evolving perspective by providing a comprehensive

literature review focused on text preprocessing specifically for the Urdu language. Urdu, an

Indo-Aryan language predominantly spoken in Pakistan and India, presents unique linguistic

complexities that distinguish it from Latin-script languages and necessitate specialized

preprocessing considerations [143, 144]. Its highly cursive Nastaliq script, rich morphology, and

agglutinative nature introduce challenges that are not always adequately addressed by general-

purpose NLP tools or models pre-trained primarily on other languages [145, 146].

The primary objective of this review is to synthesize existing research on Urdu text

preprocessing, exploring its various techniques, the challenges encountered, and its
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demonstrated impact on the performance of different NLP models. We aim to provide a

structured overview of the current state of the art, identify key findings regarding the

effectiveness of TP for Urdu, and highlight areas where further research is needed. This

comprehensive survey will address the following key aspects:

 URDU LINGUISTIC CHALLENGES: A detailed discussion of the specific

characteristics of Urdu that make its text preprocessing distinct and challenging.

 PREPROCESSING TECHNIQUES FOR URDU: An overview of common and

specialized TP techniques adapted for Urdu, including script normalization, stop word

removal, and morphological analysis (stemming/lemmatization).

 IMPACT ON TRADITIONAL CLASSIFIERS: An analysis of how TP has influenced

the performance of conventional machine learning models (e.g., Logistic Regression,

Naïve Bayes, SVM) in Urdu NLP tasks.

 IMPACT ON DEEP LEARNING AND TRANSFORMER MODELS: An

investigation into the effects of TP on more advanced architectures, including CNNs,

LSTMs, and pre-trained Transformer models (e.g., UrduBERT, XLM-RoBERTa) when

applied to Urdu text.

 KEY INSIGHTS AND FUTURE DIRECTIONS: A synthesis of the major conclusions

drawn from the reviewed literature and identification of promising avenues for future

research in Urdu text preprocessing and its integration with modern NLP paradigms.

By consolidating the fragmented knowledge in this domain, this review seeks to re-emphasize the

critical role of tailored TP in enhancing the efficacy and robustness of NLP applications for the

Urdu language, even in the era of powerful pre-trained models.

2. REVIEW OF EXISTING LITERATURE AND KEY INSIGHTS

This section provides a detailed review of the literature concerning text preprocessing for Urdu

Natural Language Processing. We categorize the discussion based on the types of preprocessing

techniques and their observed impact on various NLP models and tasks.

2.1 UNIQUE LINGUISTIC CHALLENGES OF URDU

Urdu, a language with a rich literary tradition and a significant number of speakers, presents

several inherent linguistic complexities that make its computational processing distinct and

challenging. These challenges necessitate specialized preprocessing strategies that go beyond

those typically applied to Latin-script languages.

 NASTALIQ SCRIPT COMPLEXITY: Urdu is predominantly written in the Nastaliq

http://amresearchreview.com/index.php/Journal/about


Annual Methodological Archive Research Review
http://amresearchreview.com/index.php/Journal/about

Volume3, Issue 7 (2025)

204

calligraphic style of the Perso-Arabic script [145]. This cursive and highly contextual

script features characters that change shape based on their position within a word (initial,

medial, final, isolated forms) and often combine to form complex ligatures [146]. Unlike

simple character-by-character processing, Nastaliq requires sophisticated handling to

correctly identify word boundaries and individual characters, making basic tokenization a

non-trivial task [189]. Studies on Urdu Optical Character Recognition (OCR) highlight

the difficulties in accurately segmenting and recognizing characters due to overlapping

strokes and varying baselines inherent in Nastaliq [146]. Script normalization, therefore,

becomes crucial to standardize character representations and resolve ambiguities arising

from different Unicode forms of the same character or diacritics [151, 152].

 RICH MORPHOLOGY AND AGGLUTINATION: Urdu is a morphologically rich

language, meaning words can take numerous inflected forms through the addition of

prefixes, suffixes, and infixes [143, 154]. Verbs, nouns, and adjectives undergo significant

changes for tense, aspect, mood, gender, number, and case. This agglutinative nature

leads to a high degree of word variability, increasing vocabulary size and contributing to

data sparsity issues in NLP models [143]. For instance, a single root word can generate

dozens of variants, each treated as a distinct feature without proper normalization. This

phenomenon makes stemming and lemmatization not just beneficial, but often essential

for reducing word forms to their base or root, thereby improving feature generalization

and reducing dimensionality [155, 156, 157].

 HOMOGRAPHS AND HOMOPHONES: Urdu contains many words that are spelled

identically but have different meanings (homographs) or sound alike but have different

meanings and spellings (homophones), often distinguished only by subtle diacritics which

are frequently omitted in common writing [144]. This ambiguity can pose challenges for

accurate semantic interpretation and classification, even after basic preprocessing.

 CODE-MIXING AND ROMAN URDU: In informal contexts, particularly social media,

Urdu speakers frequently mix Urdu with English (code-mixing) or write Urdu using the

Latin script (Roman Urdu) [165, 166]. This introduces significant noise, spelling

variations, and grammatical inconsistencies that traditional preprocessing techniques may

not adequately address. Research on Roman Urdu text preprocessing emphasizes the need

for specialized transliteration and normalization techniques to handle such mixed

linguistic phenomena [159, 160].
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 LACK OF STANDARDIZED RESOURCES: Compared to English, Urdu NLP suffers

from a relative scarcity of standardized, large-scale, and openly accessible linguistic

resources, including annotated corpora, comprehensive stop word lists, and robust

morphological analyzers [161]. This resource scarcity often necessitates the manual

creation or adaptation of preprocessing tools and resources, adding to the complexity of

developing Urdu NLP systems [162, 153].

2.2 PREPROCESSING TECHNIQUES AND THEIR APPLICATION IN URDU NLP

The literature highlights several key preprocessing techniques that have been adapted and

applied to Urdu text to address its unique challenges.

 SCRIPT NORMALIZATION: This is a fundamental step for Urdu, often involving

Unicode normalization to convert various character representations to a canonical form

[151]. For Nastaliq, it also includes handling ligatures (e.g., converting "ل" to its

constituent "ل" and ("ا" and removing non-essential diacritics that do not alter the word's

core meaning but introduce variability [152, 145]. Studies have shown that proper script

normalization can significantly reduce the vocabulary size and improve consistency,

leading to better feature representation for classification tasks [47, 48].

 TOKENIZATION: While seemingly basic, tokenization in Urdu is complex due to the

cursive nature of Nastaliq and the absence of clear word delimiters in some cases.

Research has explored rule-based, statistical, and neural approaches for Urdu word

segmentation [190]. Accurate tokenization is a prerequisite for all subsequent

preprocessing steps and feature extraction, and its effectiveness directly impacts the

quality of word embeddings and bag-of-words representations [25, 27].

 STOP WORD REMOVAL: Similar to other languages, Urdu contains high-frequency

words that carry little semantic value for classification tasks [50]. Researchers have

developed custom Urdu stop word lists, often through statistical methods or manual

curation, as generic lists are insufficient [53, 153]. Removing these words reduces feature

dimensionality and noise, which can improve the efficiency and sometimes the accuracy of

models, particularly traditional ones [51, 52]. However, some studies caution that overly

aggressive stop word removal can sometimes lead to a loss of context, especially for deep

learning models that can leverage such information [14].

 STEMMING AND LEMMATIZATION: Given Urdu's rich morphology, stemming
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and lemmatization are crucial for reducing inflected word forms to their base or root,

thereby addressing data sparsity and improving generalization [143, 154]. Various

approaches have been proposed for Urdu, including rule-based stemmers that identify and

strip suffixes/prefixes [154], statistical methods, and hybrid approaches combining rules

with dictionaries [155, 156]. Lemmatization, a more sophisticated process that aims for

the dictionary form, is often preferred for its linguistic accuracy but is more resource-

intensive to implement for Urdu [157, 66]. The choice between stemming and

lemmatization, and the specific algorithm, has been shown to significantly impact

classification performance, with some studies indicating that a well-designed stemmer can

yield substantial improvements [5, 70].

 PUNCTUATION AND NUMERIC HANDLING: Standardizing punctuation (e.g.,

handling Urdu-specific punctuation marks) and normalizing numeric representations (e.g.,

converting Urdu numerals to Arabic numerals) are also common preprocessing steps.

These contribute to reducing noise and ensuring consistent data representation [42, 158,

46].

 HANDLING ROMAN URDU AND CODE-MIXING: For informal text, particularly

from social media, specialized techniques are required to handle Roman Urdu (Urdu

written in Latin script) and code-mixing with English. This often involves transliteration

to convert Roman Urdu to Nastaliq script and strategies to manage mixed-language

sentences, which can include language identification at the word level or using

multilingual models that are inherently robust to code-mixing [159, 160, 165, 166].

2.3 IMPACT ON TRADITIONAL MACHINE LEARNING CLASSIFIERS

For traditional machine learning models, text preprocessing has consistently been shown to be a

vital step for Urdu text classification. These models, which often rely on bag-of-words or TF-

IDF representations, are highly susceptible to noise and high dimensionality.

 IMPROVED ACCURACY AND EFFICIENCY: Numerous studies on Urdu text

classification using models like Logistic Regression (LR), Naïve Bayes (NB), and Support

Vector Machines (SVM) have reported significant performance gains with the application

of preprocessing [175, 176, 177, 141]. Preprocessing helps in reducing the feature space,

making these models more efficient to train and less prone to overfitting due to irrelevant

features. For instance, stop word removal and stemming are frequently cited as key

contributors to improved accuracy in Urdu sentiment analysis and news categorization
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tasks when using NB or SVM [147, 168].

 ADDRESSING DATA SPARSITY: Urdu's rich morphology often leads to a sparse

feature space where many words appear infrequently. Stemming and lemmatization

consolidate different inflected forms into a single base form, effectively reducing sparsity

and improving the generalization capabilities of traditional models [142, 154]. This

allows the models to learn more robust patterns from the reduced vocabulary.

 FEATURE ENGINEERING ENHANCEMENT: Preprocessing enhances the quality of

features derived from text. For example, a clean and normalized Urdu text allows for

more accurate TF-IDF calculations, providing better weight to important terms and

improving the discriminative power of features for LR and SVM models [65, 85].

2.4 IMPACT ON DEEP LEARNING AND TRANSFORMER MODELS

The role of text preprocessing for deep learning models, particularly pre-trained Transformers,

has been a subject of extensive debate. While these models are designed to learn rich

representations from raw text, research on Urdu and other complex languages suggests that TP

still plays a significant role.

 CONTINUED RELEVANCE FOR DEEP LEARNING (CNN, BiLSTM): For deep

learning architectures like Convolutional Neural Networks (CNNs) and Bidirectional

Long Short-Term Memory (BiLSTMs), preprocessing, especially tokenization and script

normalization, remains crucial. These models learn embeddings from the input text, and

consistent, clean input ensures that the embeddings are more meaningful and less noisy

[179, 180]. While they can handle some level of noise, studies on Urdu sentiment

analysis and text summarization using CNNs and BiLSTMs have shown that

preprocessing still leads to noticeable performance improvements, particularly in

reducing training time and improving convergence [148, 178].

 SENSITIVITY OF TRANSFORMER MODELS: Contrary to the initial assumption

that Transformers might render preprocessing obsolete, a growing body of literature,

including studies on Arabic and other complex scripts, indicates that Transformer models

are indeed sensitive to text preprocessing [15, 120, 191]. For Urdu, this sensitivity is

particularly pronounced due to the Nastaliq script and morphological complexities.

o TOKENIZATION ALIGNMENT: Transformer models typically use subword

tokenization (e.g., WordPiece, SentencePiece) learned during pre-training [28,

29]. If the raw Urdu input contains inconsistencies (e.g., varying Unicode forms,
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unnormalized ligatures), it can lead to suboptimal subword segmentation, where a

single logical word might be broken into multiple, less meaningful subword

tokens. Preprocessing, especially script normalization, helps align the input text

with the tokenizer's expectations, leading to more efficient and accurate

tokenization and better utilization of pre-trained embeddings [190, 189].

o FINE-TUNING EFFICIENCY: While pre-trained Transformers (like mBERT

and XLM-RoBERTa) possess vast linguistic knowledge, fine-tuning them for

specific Urdu downstream tasks benefits from cleaner input. Preprocessing can

reduce the burden on the model to learn to ignore noise, allowing it to focus its

attention mechanisms on more salient linguistic features relevant to the task [181,

182, 183]. This can lead to faster convergence and higher accuracy during fine-

tuning, especially for tasks like Urdu sentiment analysis and news categorization

[147, 185].

o LOW-RESOURCE SCENARIOS: In low-resource scenarios for Urdu, where

pre-trained Urdu-specific Transformers might be scarce or less robust, effective

preprocessing becomes even more critical. It can help bridge the gap by providing

cleaner, more normalized input to multilingual Transformer models, allowing

them to better leverage their cross-lingual transfer capabilities for Urdu [186,

187].

 CONTEXT-DEPENDENCY AND TRADE-OFFS: The literature also emphasizes that

the optimal preprocessing strategy for Urdu is not universal. Its effectiveness depends on

the specific dataset's characteristics (e.g., formality, noise level, domain) and the NLP task

[118, 122, 192]. For instance, while stemming is generally beneficial, overly aggressive

stemming can sometimes lead to a loss of semantic nuances that might be important for

sophisticated deep learning models capable of capturing richer linguistic features [66, 67,

157]. Similarly, the benefits of stop word removal can vary; while it reduces

dimensionality for traditional models, some deep learning models might implicitly learn

to down-weight common words, making explicit removal less critical but still potentially

beneficial for efficiency [52].

2.5 SUMMARY OF KEY INSIGHTS

Based on the extensive review of the literature, several key insights emerge regarding text

preprocessing for Urdu NLP:
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 TP IS INDISPENSABLE: Despite advancements in NLP models, text preprocessing

remains a crucial and indispensable step for Urdu. Its unique linguistic complexities,

particularly the Nastaliq script and rich morphology, necessitate dedicated preprocessing

efforts to ensure effective computational analysis [149, 150, 188].

 PERFORMANCE ENHANCEMENT: Meticulous Urdu preprocessing consistently

leads to significant performance improvements across both traditional and deep learning

models. These gains are observed in various tasks, including sentiment analysis, news

classification, and other text-based applications [147, 148, 193].

 EMPOWERING SIMPLER MODELS: Effective preprocessing can empower simpler,

less computationally intensive models to achieve competitive performance, sometimes

even rivaling more complex deep learning models. This highlights the cost-effectiveness

of investing in robust preprocessing, especially in resource-constrained environments

[128, 193].

 TRANSFORMER SENSITIVITY: Transformer models, while powerful, are not

immune to the effects of input quality. Proper Urdu preprocessing, particularly script

normalization and morphological analysis, can significantly enhance their performance by

improving tokenization alignment and allowing them to focus on learning more

discriminative representations [15, 120, 191].

 CONTEXT-DEPENDENT OPTIMIZATION: There is no one-size-fits-all

preprocessing strategy for Urdu. The optimal combination of techniques depends heavily

on the specific dataset (e.g., formal vs. informal, noisy vs. clean) and the target NLP task

[118, 122, 192].

3. CONCLUSION AND FUTURE WORK

This paper has presented a comprehensive review of the literature on text preprocessing for

Urdu Natural Language Processing, highlighting its critical role in enhancing the performance

of various NLP models. We have discussed the unique linguistic challenges posed by Urdu,

including its complex Nastaliq script, rich morphology, and the prevalence of code-mixing. The

review systematically examined the impact of key preprocessing techniques—such as script

normalization, stop word removal, stemming, and lemmatization—on both traditional machine

learning classifiers and advanced deep learning architectures, including Transformer models.

The synthesis of existing research unequivocally demonstrates that text preprocessing

remains an indispensable and highly influential component of the Urdu NLP pipeline. It
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consistently leads to substantial gains in classification accuracy, empowers simpler models to

achieve competitive performance, and is particularly crucial for unlocking the full potential of

Transformer models despite their robust pre-training. Our findings strongly advocate for

researchers and practitioners to meticulously consider and explicitly document their Urdu

preprocessing choices, as these decisions can dramatically alter the efficacy and outcomes of their

Urdu NLP systems.

The insights gleaned from this review open several promising avenues for future research

specifically on Urdu NLP:

 EMPIRICAL VALIDATION OF COMBINED STRATEGIES: While individual

techniques have been studied, more empirical research is needed to rigorously evaluate

the synergistic effects of various combinations of Urdu preprocessing techniques across a

wider range of datasets and tasks. This would involve systematic experimentation to

identify optimal preprocessing pipelines for different Urdu NLP scenarios [194, 195].

 ADVANCED MORPHOLOGICAL ANALYSIS: Further research is warranted in

developing more sophisticated and accurate Urdu stemmers and lemmatizers that can

handle the language's complex morphology more effectively, potentially leveraging deep

learning approaches or hybrid models [155, 157].

 CODE-MIXING AND ROMAN URDU: Given the increasing prevalence of code-

mixed and Roman Urdu text, especially in social media, future work should focus on

developing robust and automated preprocessing techniques specifically designed to

handle these phenomena, including advanced transliteration and language identification

at the word or sub-word level [165, 166, 159, 160].

 PREPROCESSING FOR SPECIFIC NLP TASKS: Investigations into the optimal

preprocessing strategies for other critical Urdu NLP tasks beyond text classification, such

as Urdu machine translation [28], Urdu question answering [196], Urdu named entity

recognition [197], and Urdu text summarization [198], are essential to generalize the

findings.

 EXPLAINABLE PREPROCESSING: Explore methods to make the impact of

preprocessing more explainable, understanding precisely why certain techniques work

better for specific Urdu linguistic phenomena or model architectures. This could involve

analyzing how preprocessing affects the internal representations learned by deep learning

models [191].
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 ADAPTIVE AND AUTOMATED PREPROCESSING: Research into developing

intelligent or adaptive preprocessing frameworks for Urdu that can automatically select

or optimize preprocessing techniques based on the characteristics of the input Urdu data

and the target NLP task is a promising direction [128, 199].

 RESOURCE DEVELOPMENT: Continued efforts are needed to develop and

standardize high-quality, openly accessible Urdu linguistic resources, including larger

annotated corpora, comprehensive stop word lists, and robust morphological analyzers, to

facilitate more advanced NLP research [161, 162].

 COMPUTATIONAL EFFICIENCY: A more in-depth analysis of the computational

costs associated with various Urdu preprocessing steps is necessary, especially for real-

time applications or deployment in resource-constrained environments [129, 200].

By continuing to explore these areas, we can further enrich our understanding of this often-

underestimated yet critical step in Urdu natural language processing, ensuring that the full

potential of both traditional and modern NLP models is realized for the Urdu language.
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